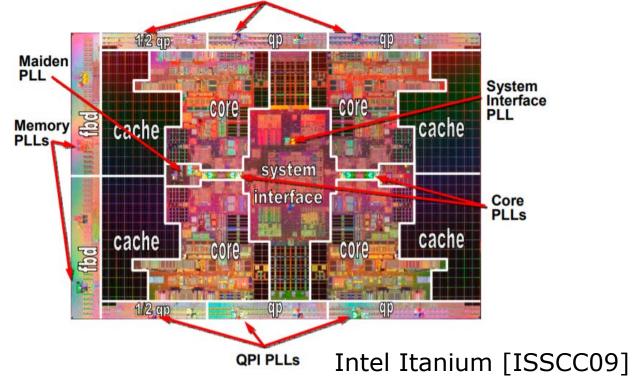
Low-Jitter PLLs for Wireless Transceivers

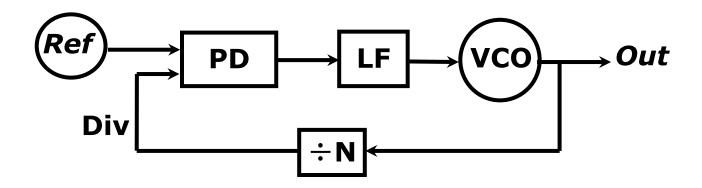
Xiang Gao Credo Semiconductor gaoxiangemail@gmail.com

February 11, 2018

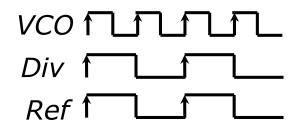
Outline


- □ PLL Basics
- Classical CP PLL Analysis and Optimization
- Low Jitter Sub-Sampling PLL Architecture
- ☐ Frac-N Sub-Sampling PLL
- Conclusion

PLL and Applications


PLL is short for Phase Locked Loop, a feedback control system that generates an output signal whose phase is locked to the phase of an input signal

- □ PLLs are versatile
 - Clock generation
 - Frequency synthesis
 - Phase/Frequency modulation
 - Clock and data recovery
 - Synchronization

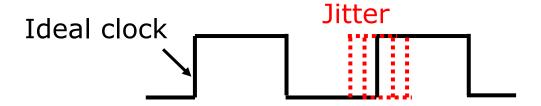

. . .

Basic PLL Architecture

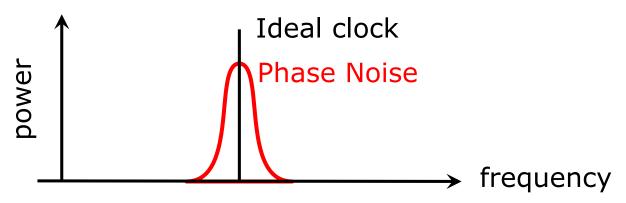
- ☐ Basic components in a PLL
 - Reference clock (Ref)
 - Phase Detector (PD)
 - Loop Filter (LF)
 - Voltage Controlled Oscillator (VCO)
 - Frequency Divider (÷N)

Phase Locked

PLL Performances Metrics

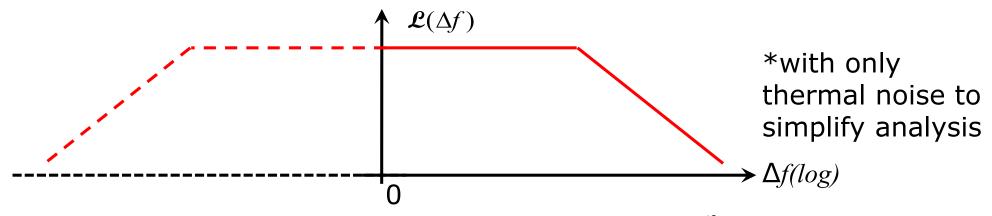

- PLL performance can be measured in many ways:
 - Phase Noise
 - Jitter
 - Power Consumption
 - Spur
 - Settling Time
 - Locking Range
 - Silicon Area

...


This tutorial emphasizes on phase noise / jitter and power as they involve fundamental tradeoffs and are often key PLL design specs for wireless transceivers

Jitter and Phase Noise

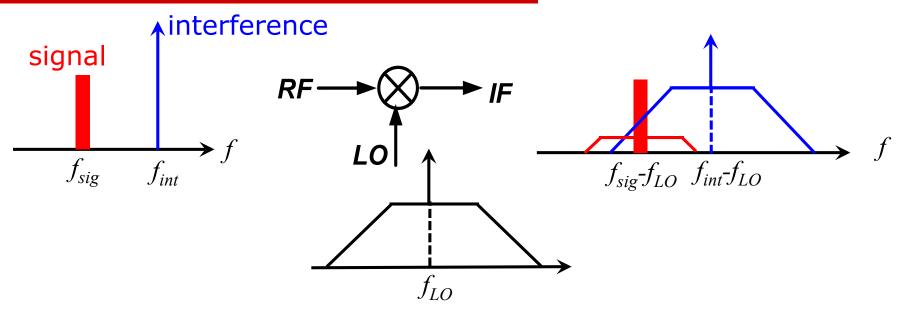
☐ Jitter is the random or systematic deviation in time of the zero-crossings of a clock with respect to corresponding zero-crossings of an ideal clock



In frequency domain, the deviation from ideal clock result in spectral components at frequencies other than the intended output frequency, i.e., phase noise

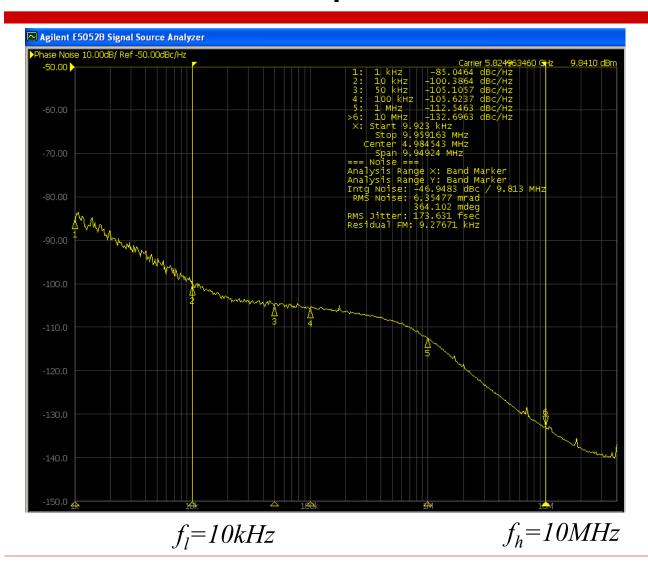
Relating Jitter and Phase Noise

Phase Noise is often expressed in single-sideband-noise-to-carrier ratio $\mathcal{L}(\Delta f)$, which is half the one sided power spectral density S_{ϕ} , at offset frequency Δf relative to the carrier, plotted in dB scale with unit dBc/Hz:



- Total rms phase error is the integral of $\mathcal{L}(\Delta f)$: $\sigma_{\Phi}^2 = 2 \times \int_0^{\infty} \mathcal{L}(\Delta f) df$
- □ Rms jitter is related to rms phase error as:

$$\frac{\sigma_t}{T_{out}} = \frac{\sigma_{\Phi}}{2\pi} \Rightarrow \sigma_t = \frac{\sigma_{\Phi}}{2\pi f_{out}} \quad \text{thus} \quad \sigma_t^2 = \frac{2 \times \int_0^{\infty} \mathcal{L}(\Delta f) df}{(2\pi f_{out})^2}$$


7 of 82

Impact of Phase Noise In Wireless Transceivers

- In wireless transceivers, PLL is often used to generate Local Oscillator (LO) clocks for the mixer
- □ In receiver, reciprocal mixing of LO phase noise and interferences fall into signal band and degrade SNR. This translates to a spec of total phase error or jitter integrated over a band of interest [f_I, f_h]. E.g. [10kHz,10MHz] for 802.11n WLAN

Phase Noise Spectrum Example

☐ From the signal source analyzer, we can read

Carrier Freq	5.825GHz
PN at 10kHz	-100.3dBc/Hz
PN at 100kHz	-105.6dBc/Hz
PN at 1MHz	-112.5dBc/Hz
PN at 10MHz	-132.6dBc/Hz
Intg Noise (10kHz,10MHz)	-46.95dBc
RMS Noise	6.35 mrad,
	364.1mdeg
RMS Jitter	173.6 fsec

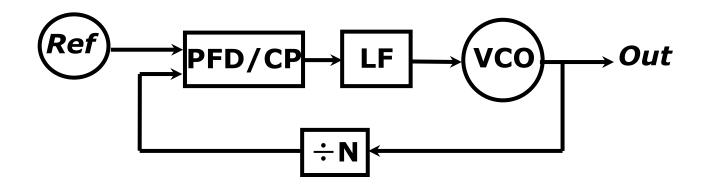
Phase Noise / Jitter Calculation Example

□ In this example, single side phase noise integrated from 10KHz to 10MHz is -46.95dBc, the rms phase error is:

$$\sigma_{\Phi} \approx 10^{(-46.95+3)/20} \approx 6.35 \text{mrad}$$

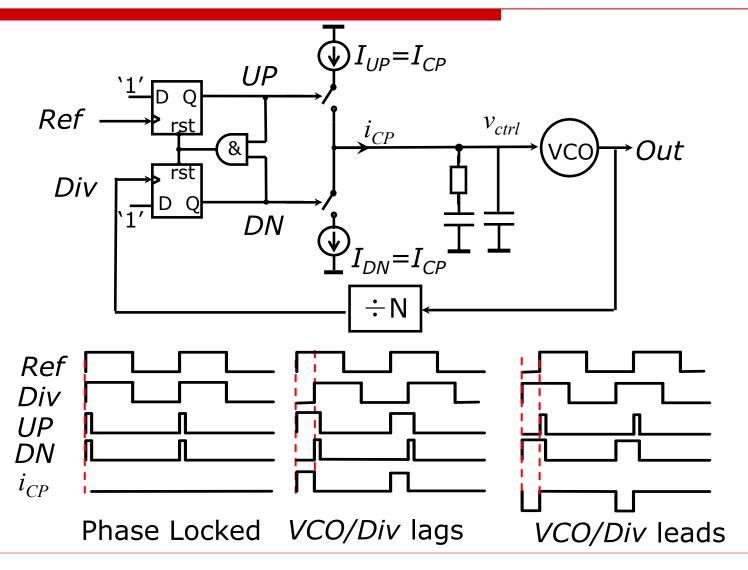
or
$$\frac{6.35m}{2\pi} \times 360 \approx 364$$
 mdeg

☐ The rms jitter can be calculated as:


$$\sigma_t = \frac{\sigma_{\Phi}}{2\pi f_{out}} = \frac{6.35m}{2\pi \times 5.825GHz} \approx 173.6 \, \text{fs}$$

Carrier Freq	5.825GHz
PN at 10kHz	-100.3dBc/Hz
PN at 100kHz	-105.6dBc/Hz
PN at 1MHz	-112.5dBc/Hz
PN at 10MHz	-132.6dBc/Hz
Intg Noise (10kHz,10MHz)	-46.95dBc
RMS Noise	6.35 mrad, 364.1mdeg
RMS Jitter	173.6 fsec

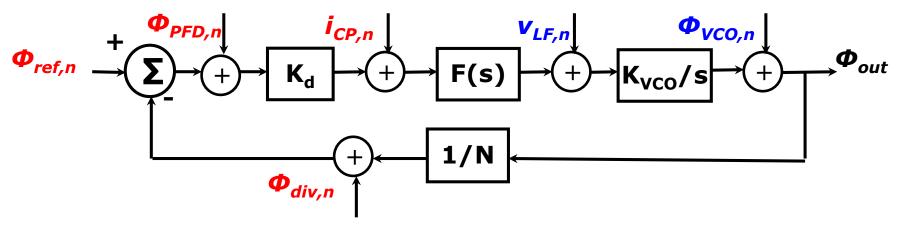
Outline


- □ PLL Basics
- □ Classical CP PLL and PLL FOM
- Low Jitter Sub-Sampling PLL Architecture
- ☐ Frac-N Sub-Sampling PLL
- Conclusion

Classical CP PLL Architecture

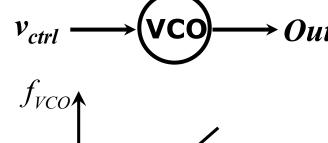
- Components in a classical CP PLL
 - Reference clock (Ref)
 - Phase Frequency Detector (PFD)/Charge-Pump(CP)
 - Loop Filter (LF)
 - Voltage Controlled Oscillator (VCO)
 - Frequency Divider (÷N)

Classical CP PLL Working Principal


PLL Transient Response Example

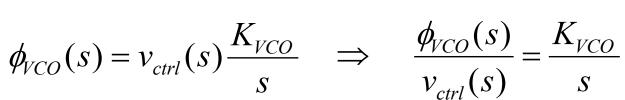
□ PLL transient response is generally a nonlinear process. The PLL operation is non-continuous (divider/PFD event driven, CP output non-continuous)

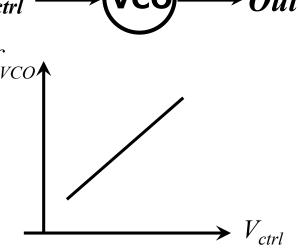
Linear Phase Domain Model


 \square However, once phase locked and if PLL bandwidth $f_c < f_{ref}/10$, a linear phase-domain model can be used for noise and stability analysis

- □ To analyze PLL phase noise, we can group the noise sources into two:
 - VCO noise: noise from LF/VCO/VCO buffer referred to VCO output
 - Non-VCO noise: noise from other loop components referred to PFD input, amplified by N² when referred to PLL output
- ☐ How do we derive this model?

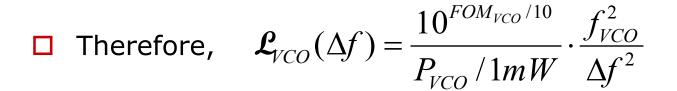
VCO and Modeling

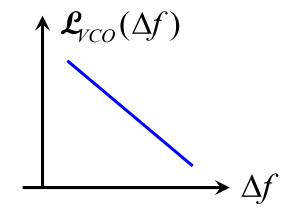

VCO generates PLL output, its frequency and phase can be expressed as


$$\omega_{VCO} = \omega_{VCO,center} + v_{ctrl} \cdot K_{VCO}$$

$$\phi_{VCO}(t) = \int \omega_{VCO} dt = \int \omega_{VCO,center} \cdot dt + \int v_{ctrl} \cdot K_{VCO} \cdot dt$$

Taking the Laplace transform (first term is a constant)

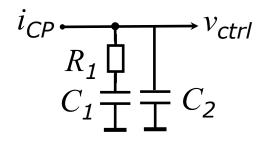

VCO in phase domain is an integrator



VCO Phase Noise

UCO phase noise is fundamentally related to design parameters like oscillation frequency f_{VCO} , and power dissipation P_{VCO} . The quality of a VCO design can be benchmarked using the classic VCO Figure-Of-Merit (FOM) [1]

$$FOM_{VCO} = 10\log(\mathcal{L}_{VCO}(\Delta f) \cdot \frac{\Delta f^{2}}{f_{VCO}^{2}} \cdot \frac{P_{VCO}}{1mW})$$

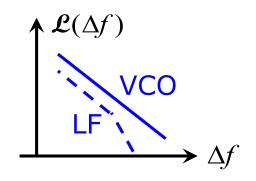


□ State-of-art VCO design's FOM is <-190dBc/Hz, meaning e.g. <-130dBc/Hz phase noise at 1MHz offset at 1GHz output given 1mW power

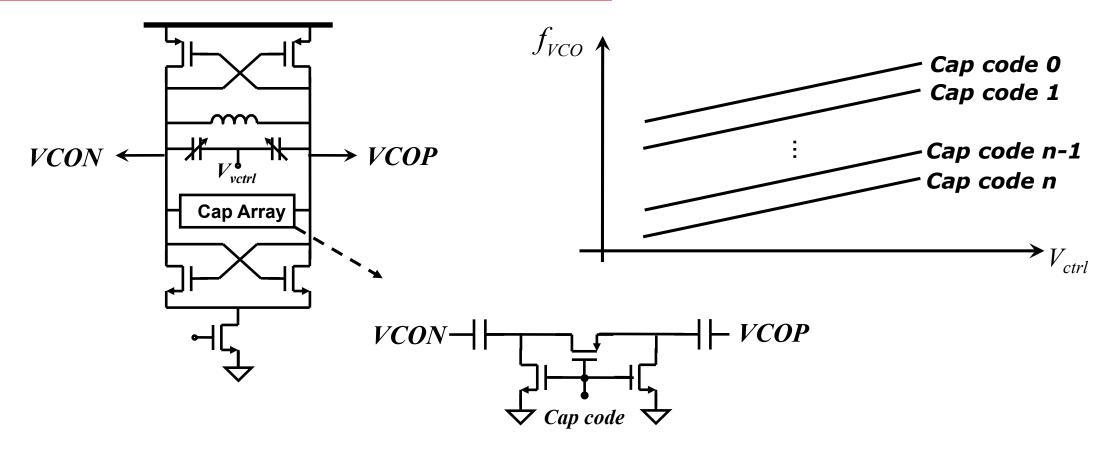
Loop Filter and Noise

☐ The most common LF is a second order filter:

$$F_{LF}(s) = \frac{1}{s(C_1 + C_2)} \cdot \frac{sR_1C_1 + 1}{sR_1 \frac{C_1C_2}{C_1 + C_2} + 1}$$

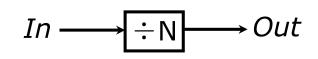


 \square LF noise is from the resistor R, referred to VCO output (assume $C_1 >> C_2$):


$$\mathcal{L}_{VCO-LF}(\Delta f) \approx \frac{1}{2} \times 4kTR_1 \times \left| \frac{1}{1 + sR_1C_2} \right|^2 \times \left| \frac{K_{VCO}}{s} \right|^2 \quad \text{with } s = j2\pi\Delta f$$

at small
$$\Delta f$$
: $\mathcal{L}_{VCO-LF}(\Delta f) \approx \frac{kT}{2\pi^2} \cdot R_1 \cdot K_{VCO}^2 \cdot \frac{1}{\Delta f^2}$

Targeting for low jitter and low power, LF noise should be made negligible compared with intrinsic VCO noise by reducing R_1 (at the expense of larger C) or reducing K_{VCO}


Typical VCO design

 \square Digital controlled coarse tuning cap to handle large tuning range requirement while keeping K_{VCO} low

Divider Modelling

- Basic function of a frequency divider $\omega_{out} = \frac{\omega_{in}}{N}$

- What's the effect of divider on phase modulated incoming signal?
 - Input phase

$$\phi_{in}(t) = \omega_{in}t + A_m \sin \omega_m t$$

- Instantaneous input frequency

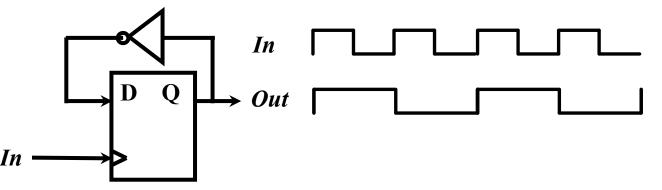
$$\omega_{in,inst}(t) = \frac{d\phi_{in}(t)}{dt} = \omega_{in} + A_m \omega_m \cos \omega_m t$$

- Instantaneous output frequency
$$\omega_{out,inst}(t) = \frac{\omega_{in,inst}}{N} = \frac{\omega_{in}}{N} + \frac{A_m \omega_m \cos \omega_m t}{N}$$

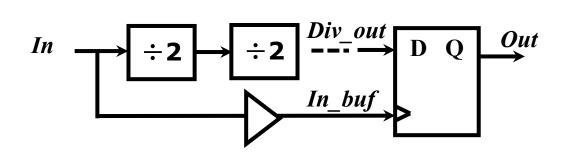
Divider Modelling, Cont'd

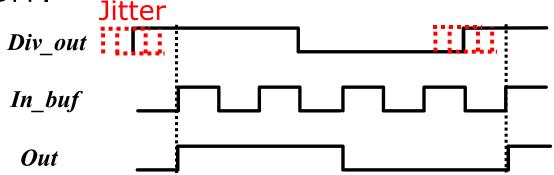
☐ The phase at divider output is

$$\phi_{out}(t) = \int \omega_{out,inst}(t) \cdot dt$$

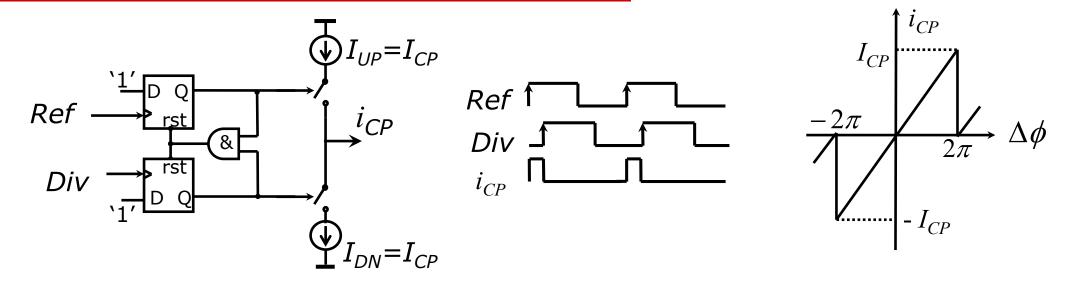

$$= \int \left(\frac{\omega_{in}}{N} + \frac{A_m \omega_m \cos \omega_m t}{N}\right) \cdot dt$$

$$= \frac{\omega_{in}}{N} t + \frac{A_m}{N} \sin \omega_m t$$


- □ For the modulated term, peak phase deviation is reduced by N. However, the modulation frequency is not affected.
- ☐ In phase domain, divider can thus be modeled as 1/N


Low Noise Divider Design

□ Simple divide-by-2 design



- □ If N is large, Div-N is often designed with multiple smaller divider stages in series, jitter accumulates over the stages
- □ Divider chain jitter can be removed using retimer at divider output. The jitter would then be just from the retiming DFF.

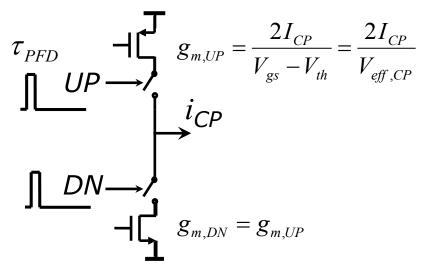
PFD/CP Modelling

- □ PFD detects timing error, the gain is $K_{PFD} = \frac{\Delta \varphi_{PFD-out}}{\Delta \varphi_{PFD-in}} = \frac{2\pi \times \Delta t / T_{ref}}{2\pi \times \Delta t / T_{ref}} = 1$
- CP pumps current into LF, the gain is

$$K_{CP} = \frac{\overline{i_{CP}}}{\Delta \phi_{PFD-out}} = \frac{I_{CP} \times \Delta t / T_{ref}}{2\pi \times \Delta t / T_{ref}} = \frac{I_{CP}}{2\pi} \quad \text{thus} \quad K_d = K_{PFD} \cdot K_{CP} = \frac{I_{CP}}{2\pi}$$

CP Noise

□ Assume the simplest CP design and same UP/DN transistor gm, the PSD of the CP thermal noise current is


$$S_{iCP,n}(f) = 4kT\gamma \cdot (g_{m,UP} + g_{m,DN})$$

$$\approx 8kT\gamma \cdot (2I_{CP}/V_{eff,CP})$$

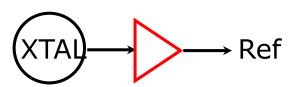
In steady state, CP is switched on only for a fraction of time τ_{PFD} of each period T_{ref} to avoid the CP dead zone. The equivalent CP noise is:

$$S_{iCP,n}(f) = 16kT\gamma \cdot \frac{I_{CP}}{V_{eff,CP}} \cdot \frac{\tau_{PFD}}{T_{ref}}$$

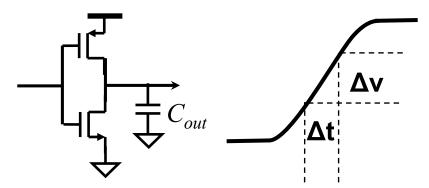
The theoretical minimum power needed by a CP is: $P_{CP} = I_{CP} V_{DD} \times \frac{\tau_{PFD}}{T_{ref}}$

CP Noise Referred to PLL Output

☐ CP noise referred to PLL output


$$\mathcal{L}_{PLL-CP}(\Delta f) = \frac{S_{iCP,n}(f)/2}{\left(\frac{I_{CP}}{2\pi} \cdot \frac{1}{N}\right)^2} = \frac{f_{out}^2}{f_{ref}} \cdot \frac{32\pi^2 kT\gamma}{V_{eff,CP}} \cdot \frac{1}{I_{CP}} \cdot \frac{\tau_{PFD}}{T_{ref}}$$

$$\Rightarrow \mathcal{L}_{PLL-CP}(\Delta f) = \frac{f_{out}^2}{P_{CP}} \cdot \{ \tau_{PFD}^2 \cdot \frac{32\pi^2 \gamma \cdot kT \cdot V_{DD}}{V_{eff,CP}} \}$$


 \square To minimize CP noise, designer should maximize the CP current source over-drive voltage, minimize switch-on time, or burn more power with larger I_{CP}

Reference Noise

□ Reference clock is often provided by an off-chip clock source like a XTAL oscillator. On chip clock buffers adds jitter to it.

☐ Jitter generated by a simple inverter buffer can be related to the rms voltage noise and slew rate SR_{out} at inverter output [2]:

$$\sigma_{t,invbuf}^{2} = \frac{F_{n} \cdot kT / C_{out}}{SR_{out}^{2}}$$

 F_n : excess noise factor

☐ For thermal noise, PSD is white:

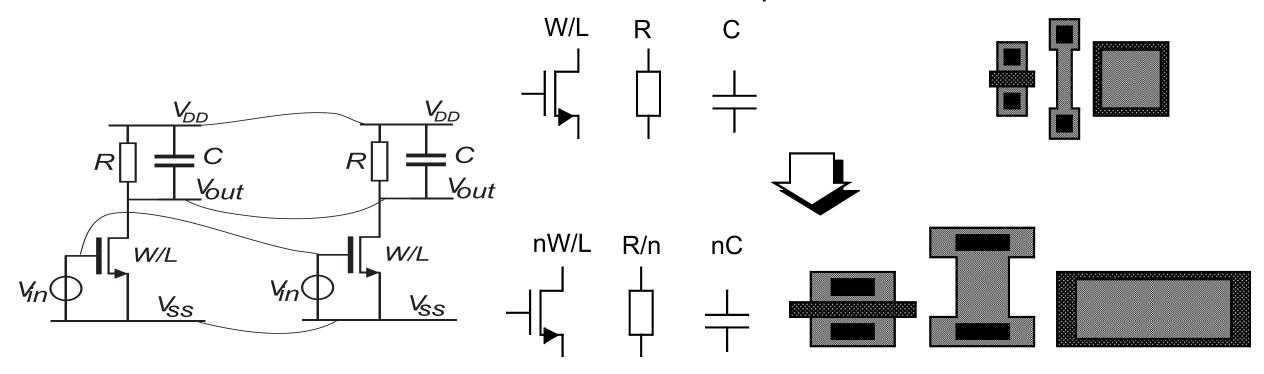
$$\frac{\int_{invbuf}^{\mathcal{L}_{invbuf}}(\Delta f)}{\Delta f} \sigma_{t,invbuf}^{2} = \frac{2 \times \int_{0}^{f_{ref}/2} \mathcal{L}_{invbuf}(\Delta f) df}{(2\pi f_{ref})^{2}} \Rightarrow \mathcal{L}_{invbuf}(\Delta f) = 4\pi^{2} \cdot f_{ref} \cdot \frac{F_{n} \cdot kT / C_{out}}{SR_{out}^{2}}$$

Inverter Clock Buffer Noise

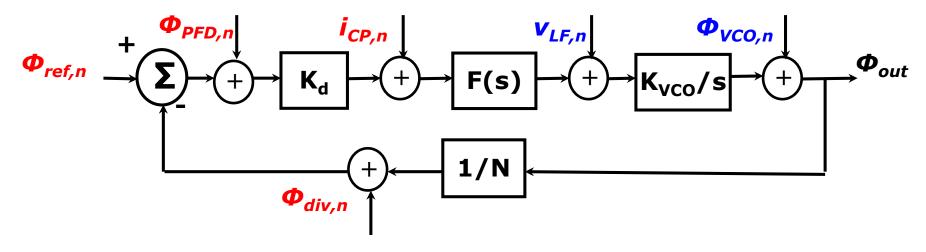
■ When referred to PLL output:

$$\mathcal{L}_{PLL-invbuf}(\Delta f) = N^{2} \cdot \mathcal{L}_{invbuf}(\Delta f) = \frac{f_{out}^{2}}{f_{ref}} \cdot 4\pi^{2} \cdot \frac{F_{n} \cdot kT / C_{out}}{SR_{out}^{2}}$$

□ On the other hand, theoretical minimum inverter power is dynamic power:


$$P_{invbuf} = f_{ref} \cdot C_{tot} \cdot V_{DD}^2$$

$$\Rightarrow \mathcal{L}_{PLL-invbuf}(\Delta f) = \frac{f_{out}^2}{P_{invbuf}} \cdot \left\{ \frac{4\pi^2 \cdot F_n \cdot kT \cdot V_{DD}^2}{SR_{out}^2} \cdot \frac{C_{tot}}{C_{out}} \right\}$$


- \square To minimize inverter buffer noise, designer should maximize output slew rate, minimize noise factor and C_{tot}/C_{out} . For further lower noise, burn more power.
- ☐ Similar analysis applies to other event driven circuits e.g. DFFs in divider/PFD

Burn More Power (Impedance Level Scaling)

□ Put two identical circuit in parallel and connect all the nodes, power and area would double but noise will be reduced by 3dB

Linear Phase Domain Model With Noise

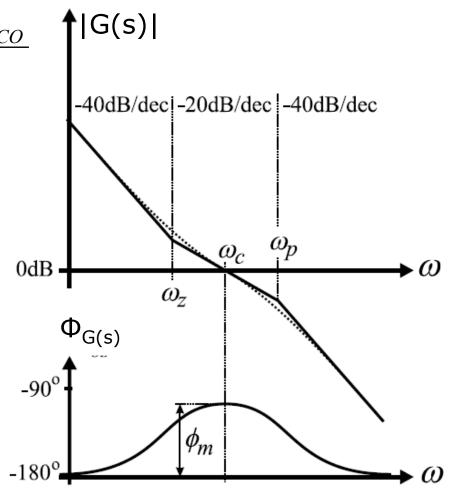
□ Now we know the PLL open loop gain is

$$G(s) = \frac{1}{N} \cdot \frac{I_{CP}}{2\pi} \cdot \frac{1}{s(C_1 + C_2)} \cdot \frac{sR_1C_1 + 1}{cR_1C_2} \cdot \frac{K_{VCO}}{s}$$

- This is a 3rd order type-II PLL (two poles at origin)

PLL Open Loop Gain and Bode Plot

$$G(s) = \frac{1}{N} \cdot \frac{I_{CP}}{2\pi} \cdot \frac{1}{s(C_1 + C_2)} \cdot \frac{sR_1C_1 + 1}{sR_1 \frac{C_1C_2}{C_1 + C_2} + 1} \cdot \frac{K_{VCO}}{s}$$


$$\omega_z = \frac{1}{R_1 C_1}$$

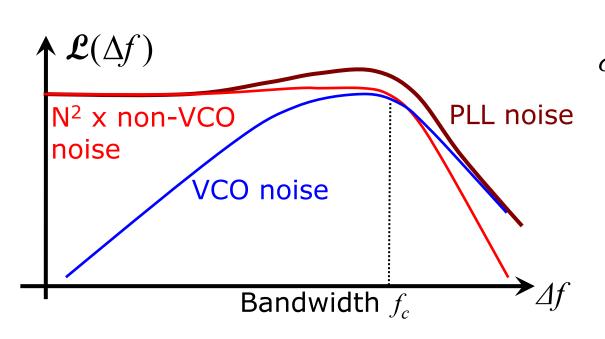
$$\omega_p = \frac{1}{R_1 \frac{C_1 C_2}{C_1 + C_2}}$$

$$\omega_c \approx \frac{I_{CP} \cdot R_1 \cdot K_{VCO}}{2\pi \cdot N}$$
 (assume C₁>>C₂)

$$\phi_m = \arctan \frac{\omega_c}{\omega_z} - \arctan \frac{\omega_c}{\omega_p}$$

 \square E.g., $\omega_c/\omega_z=4$, $\omega_c/\omega_p=1/4$, phase margin is about 62 degree

PLL Noise Transfer Function


□ Noise transfer function from VCO to PLL output

$$H_{VCO}(s) = \frac{1}{1 + \frac{1}{N} \cdot K_d \cdot F_{LF}(s) \cdot \frac{K_{VCO}}{s}} = \frac{1}{1 + G(s)}$$
 High pass filtered

□ Noise transfer function from (PFD input referred) non-VCO noise to PLL output

$$H_{non-VCO}(s) = N \cdot \frac{G(s)}{1 + G(s)} = N \cdot [1 - H_{VCO}(s)]$$
 Low pass filtered, amplified by N

Overall PLL Phase Noise and Jitter

$$\sigma_{t,non-VCO}^{2} = \frac{2\int_{f_{L}}^{f_{H}} \mathcal{L}_{non-VCO}(\Delta f) |H_{non-VCO}(j2\pi\Delta f)|^{2} df}{(2\pi f_{out})^{2}}$$

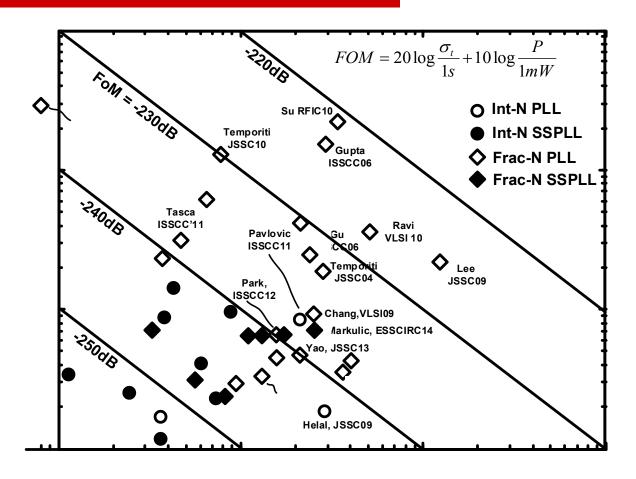
$$\sigma_{t,VCO}^{2} = \frac{2\int_{f_{L}}^{f_{H}} \mathcal{L}_{VCO}(\Delta f) |H_{VCO}(j2\pi\Delta f)|^{2} df}{(2\pi f_{out})^{2}}$$

$$\sigma_{t,PLL}^{2} = \frac{2\int_{f_{L}}^{f_{H}} \mathcal{L}_{PLL}(\Delta f) df}{\left(2\pi f_{out}\right)^{2}} = \sigma_{t,VCO}^{2} + \sigma_{t,non-VCO}^{2}$$

- Non-VCO noise low pass filtered dominates in-band, VCO noise high pass filtered dominates out-band, thus involve bandwidth tradeoff
- Optimum bandwidth $f_{c,opt}$ is approximately where VCO and non-VCO noise intersects. At $f_{c,opt}$, VCO and non-VCO components contribute equal jitter [3]

PLL FOM

□ In an optimized PLL, VCO and non-VCO components not only contributes equally to jitter, but also equally to power [3]. Once optimization is done, the fundamental way to improve jitter is to burn more power

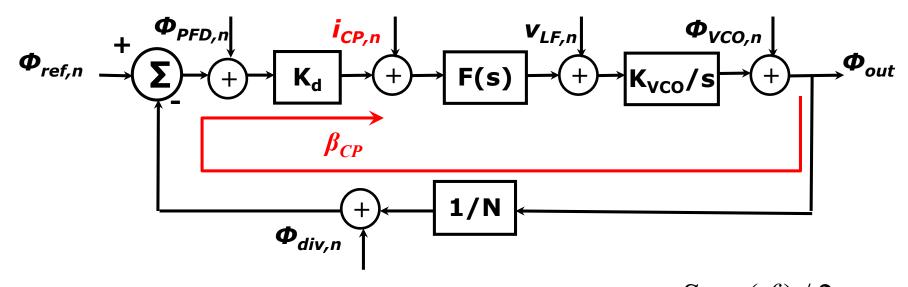

$$\sigma_{t,PLL}^2 \propto rac{1}{P_{PLL}}$$

A PLL benchmarking FOM can thus be defined as

$$FOM_{PLL} = 10\log[(\frac{\sigma_{t,PLL}}{1s})^2 \cdot \frac{P_{PLL}}{1mW}]$$

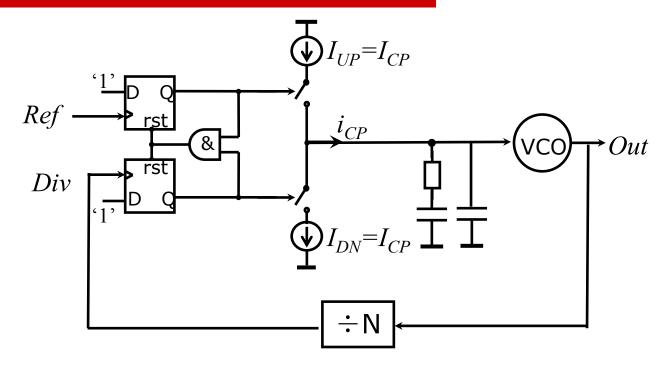
□ The design quality of VCO and non-VCO components are equally important in achieving good PLL FOM

State-of-Art PLL FOMs


□ PLL FOM improves over the years, Sub-Sampling PLLs achieved state-of-art FOM

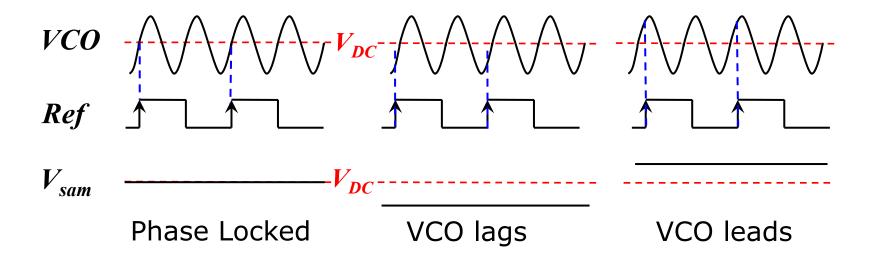
Outline

- □ PLL Basics
- Classical CP PLL Analysis and Optimization
- Low Jitter Sub-Sampling PLL Architecture
- ☐ Frac-N Sub-Sampling PLL
- Conclusion

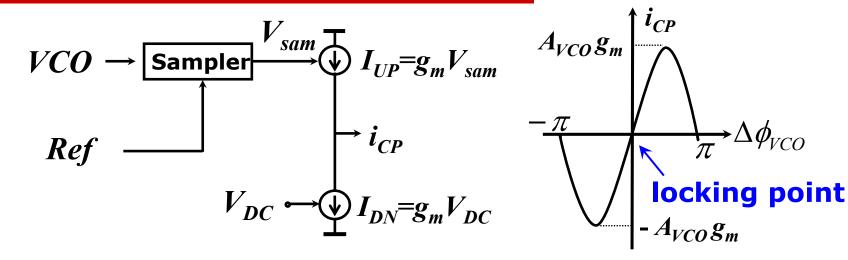

CP Noise and CP Feedback Gain

☐ CP is one of the major PLL noise source

- $\square \text{ Define CP feedback gain } \beta_{CP} \text{ , } \mathcal{L}_{PLL-CP}(\Delta f) = \frac{S_{iCP,n}(f)/2}{(\beta_{CP})^2}$
- \square CP noise is suppressed by eta_{CP} , large eta_{CP} desired for low noise


Classical PLL CP Feedback Gain

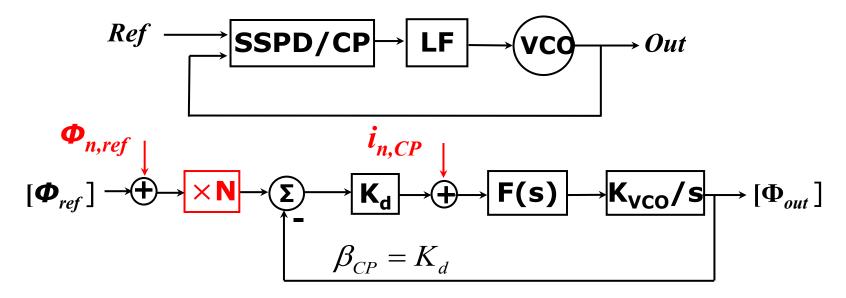
 \square β_{CP} reduced by N, thus CP noise amplified by N²


$$eta_{CP,class} = \frac{1}{N} \times \frac{I_{CP}}{2\pi}$$

Sub-Sampling Phase Detector (SSPD)

- ☐ Sub-Sampling PD for Integer-N PLL [4]
 - VCO sub-sampled by Ref without going through divider
 - Phase/Timing error converted into voltage error
 - High phase detection gain due to high VCO slew rate (dv/dt)

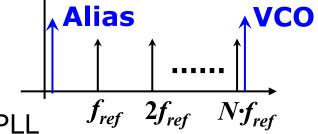
Sub-Sampling PD/CP (SSPD/CP)



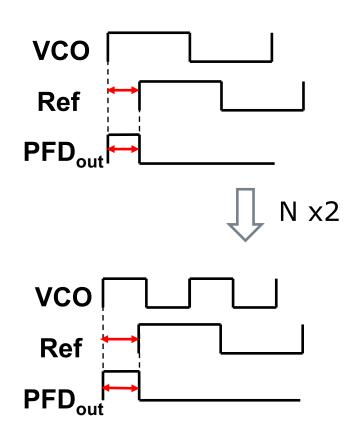
- Voltage controlled CP
 - Ideal characteristic
- □ Detection characteristic is fairly linear once in lock

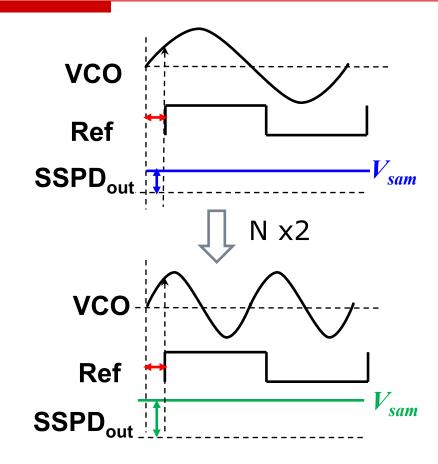
$$\beta_{CP,SS} = \frac{\overline{i_{CP}}}{\Delta \phi_{VCO}} = \frac{A_{VCO} \sin(\Delta \phi_{VCO}) \cdot g_m}{\Delta \phi_{VCO}} \approx A_{VCO} \cdot g_m$$

There is no N factor


SSPLL and Modeling

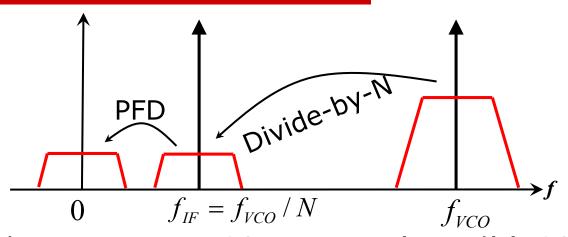
- No Divider but a virtual Multiplier
 - Sub-sampling process


$$f_{alias} = f_{VCO} - N \cdot f_{ref}$$

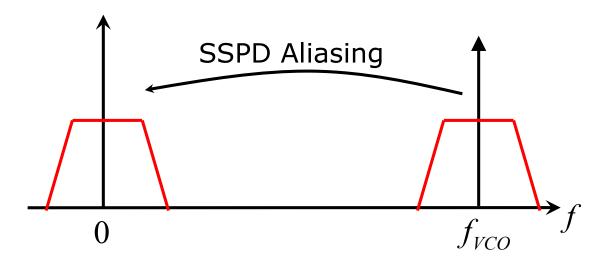


CP noise *not* multiplied by N²

Essential Difference In Phase Detection



□ Same PD output, thus $β_{CP}$ halved acts as Δt detector


□ PD output x2 (SlewRate x2), thus same β_{CP} acts as $\Delta \phi$ detector

N Factor On CP Noise: Another Angle

- □ PLL is a loop back transceiver: VCO transmits 'signal' (VCO noise), the Loop receive/process it and feed it back to cancel/suppress the VCO noise
- ☐ Classical PLL is similar to a superheterodyne receiver
 - Divider: 1st down-converter, to low IF
 - PFD: 2nd down-converter, to DC
 - CP/LF: base band (TIA/LF)
- □ Divider as down-converter has 1/N attenuation, PFD/CP noise thus amplified by N²

Why no N Factor In SSPLL

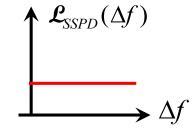
- SSPLL is similar to a direct conversion receiver
- □ SSPD down-converter has no attenuation but a gain of 1, thus no amplification for PD/CP noise

SSPLL VS Classical PLL

- □ SSPLL ideally has no divider noise
- \square SSPLL CP noise greatly suppressed by large β_{CP}
 - Comparing β_{CP} with classical PFD/CP assuming same I_{CP}

$$\frac{\beta_{CP,SSPD}}{\beta_{CP,PFD}} = \frac{A_{VCO}g_{m}}{(I_{CP}/2\pi)/N} = 4\pi \cdot N \cdot \frac{A_{VCO}}{2I_{CP}/g_{m}} = 4\pi \cdot N \cdot \frac{A_{VCO}}{V_{eff,CP}} >> 1$$

e.g.
$$= 4\pi \times 40 \times \frac{0.4V}{0.2V} \approx 1000$$

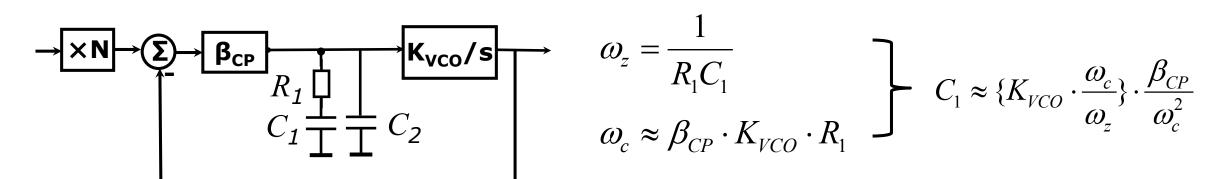

SSPLL has much larger β_{CP} , thus more CP noise suppression

SSPD Noise

The sampling process would add kT/C noise and cause jitter

$$\sigma_{t,SSPD}^{2} = \frac{\overline{v_{n}^{2}}}{SR_{out}^{2}} = \frac{kT/C_{out}}{(A_{VCO} \cdot \omega_{VCO})^{2}}$$

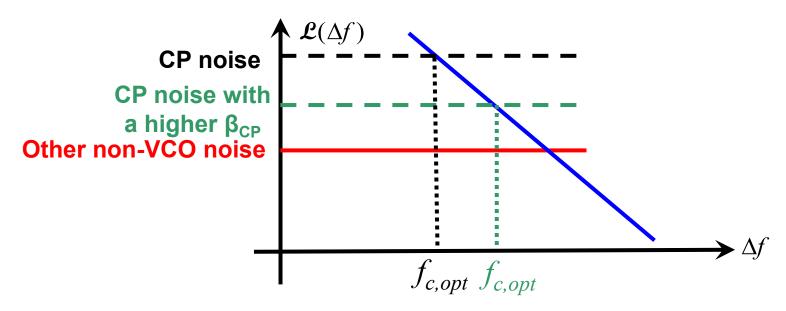
☐ With white PSD, the SSPD phase noise is:


$$\sigma_{t,SSPD}^{2} = \frac{2 \times \int_{0}^{f_{ref}/2} \mathcal{L}_{SSPD}(\Delta f) df}{(2\pi f_{ref})^{2}} \quad \Rightarrow \mathcal{L}_{SSPD}(\Delta f) = \frac{kT}{C_{sam} \cdot f_{ref} \cdot A_{VCO}^{2}}$$

e.g.
$$=\frac{4\times10^{-21}}{10f\times40M\times0.4^2}\approx-132dBc/Hz$$

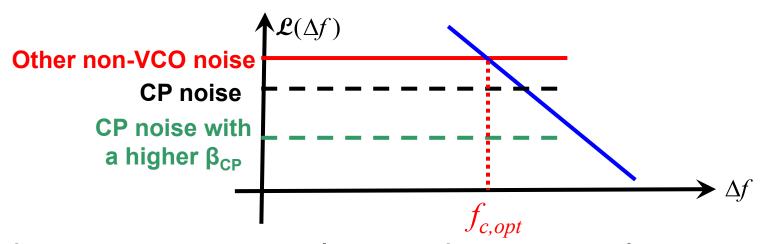
- 10fF C_{sam} enough for very low phase noise

SSPLL Design Challenges


- SSPLL has no divider, may lock to any integer N
- \square SSPD/CP has very large β_{CP} , may need big cap for stabilization

 \square Once the design choice of K_{VCO} and ω_c / ω_z has been made

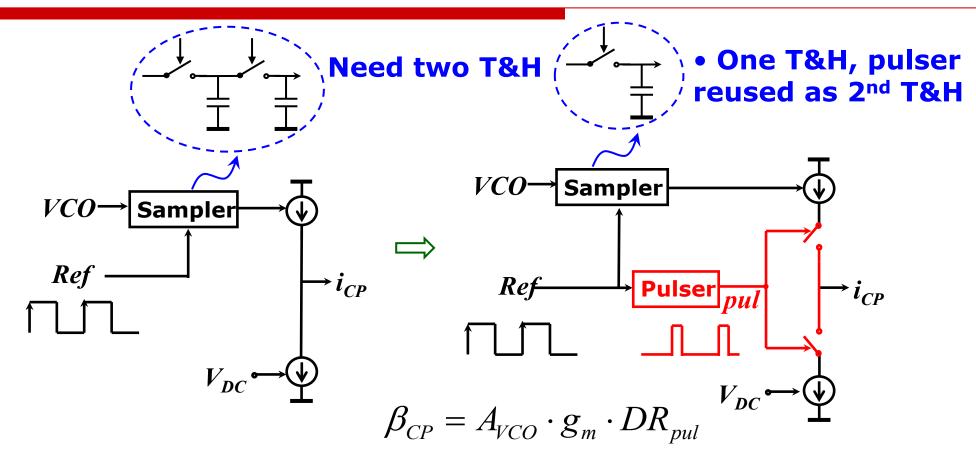
$$C_1 \propto \frac{\beta_{CP}}{\omega_c^2}$$
 or $C_1 \propto \frac{\beta_{CP}}{f_c^2}$


Relating β_{CP} , $f_{c,opt}$ and Filter Area

■ When CP noise is much higher than other noise

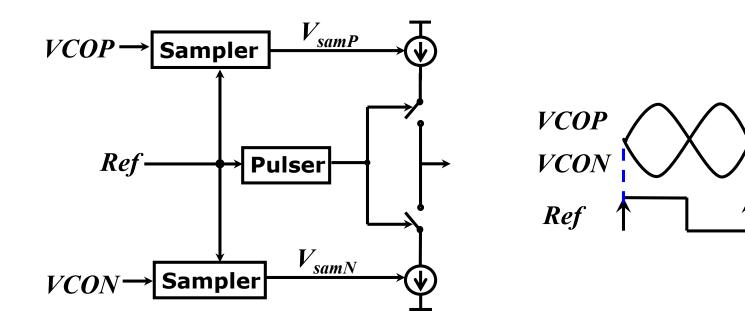
$$\left. \begin{array}{c} f_{c,opt} \propto eta_{CP} \\ C_1 \propto \overline{eta_{CP}^2} \end{array} \right\} \quad C_1 \propto \overline{\frac{1}{eta_{CP}}} \quad ext{Larger eta_{CP} saves area}$$

Relating β_{CP} , $f_{c,opt}$ and Filter Area

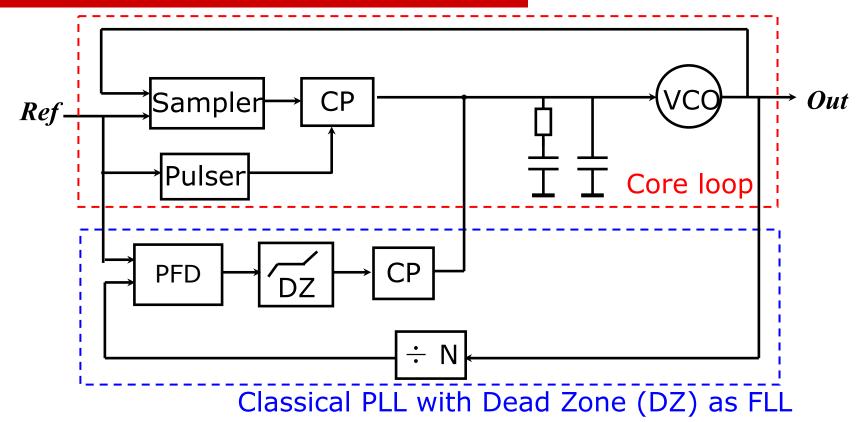


■ When CP noise is no longer dominating loop noise,

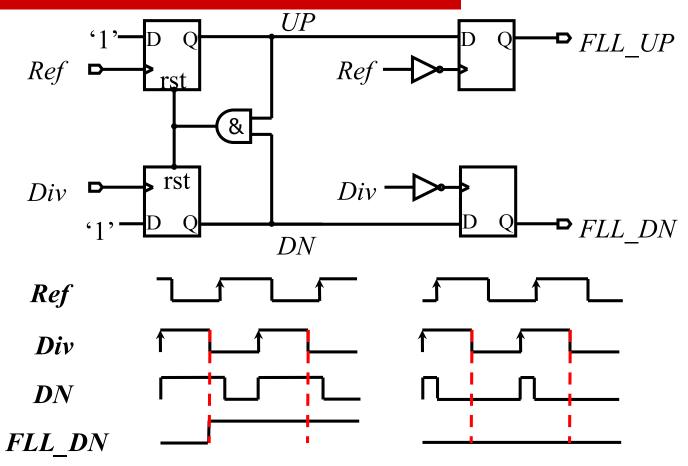
$$f_{c,opt} = Const$$
 $C \propto \beta_{CP}$ Larger β_{CP} wastes area $C \propto \frac{\beta_{CP}}{f_{c,opt}^2}$


 \square Once CP noise is negligible, further larger β_{CP} only wastes area

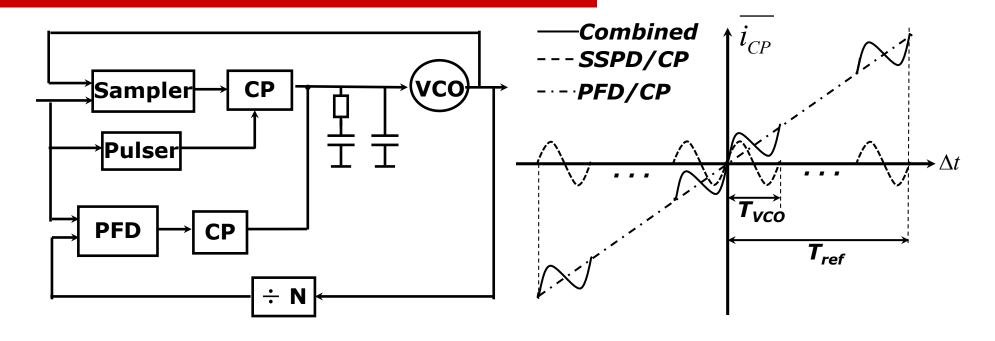
SSPD/CP with Gain Control


 \square A proper choice of Pulser duty ratio DR_{pul} reduces filter area while keeping CP noise negligible. Pulser also reduces the sample and hold induced loop delay

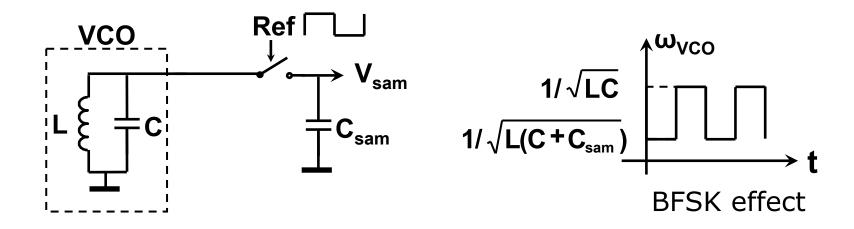
Differential Sampling


- Cancels clock feed-through & charge injection
- □ VCO crossing (most linear point) is locking point

SSPLL With Frequency Locking Loop


- \square During locking, $\Delta\Phi$ > DZ, FLL has large gain, brings loop to lock
- \square Close to locking, $\Delta\Phi$ < DZ, FLL has zero gain, not injecting noise
- ☐ FLL can also be disabled after locking to save power

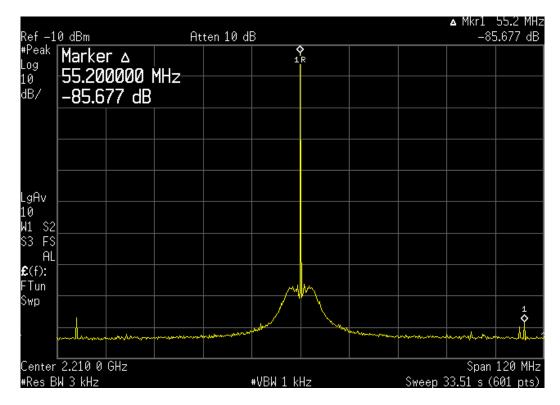
Dead Zone Creator Example


- Large phase error
 Small phase error
- With 50% Ref and Div duty ratio, Dead Zone is $(-\pi, +\pi)$

It Also Works Without Dead Zone

- FLL keeps running, more robust against disturbances [5]
- □ Overall characteristic is SSPD/CP and PFD/CP combined
- □ FLL PFD/CP injects noise but is attenuated by $(\beta_{CP,SSPD} + \beta_{CP,PFD})^2$

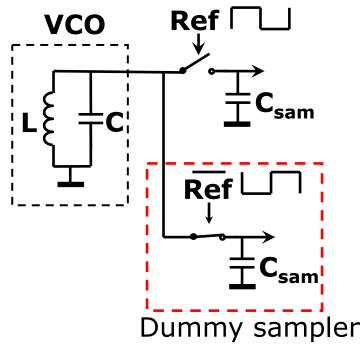
How To Design The SSPD

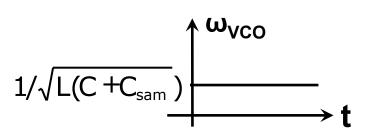

- □ SSPD can be designed as simple switch and cap. However, sampling activity disturbs the VCO in a few ways and need to be taken care of.
- The most noticeable disturbance to VCO is load modulation or BFSK, which would lead to large reference spurs:

$$Spur(dBc) = 20\log[\sin(\pi \cdot DR_{ref}) \cdot \frac{N}{2\pi} \cdot \frac{C_{sam}}{C}]$$

Reference Spur

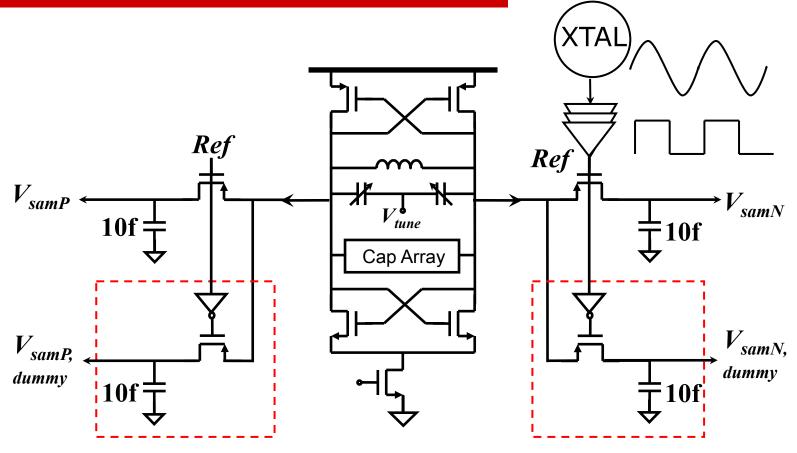
☐ Spurs are unwanted spurious component and would lead to deterministic

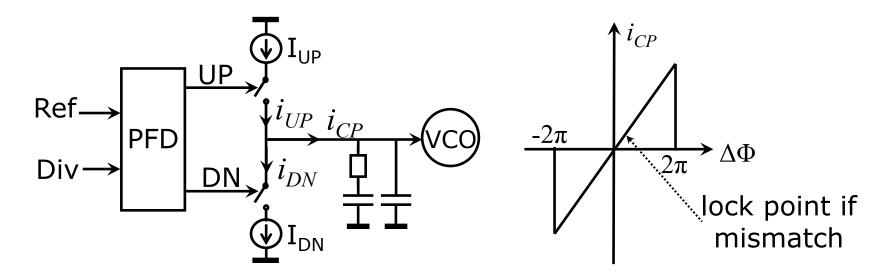

jitter (versus random jitter by phase noise)



$$\Delta t_{p-p} = \frac{2}{\pi f_{out}} \times 10^{Spur(dBc)/20}$$

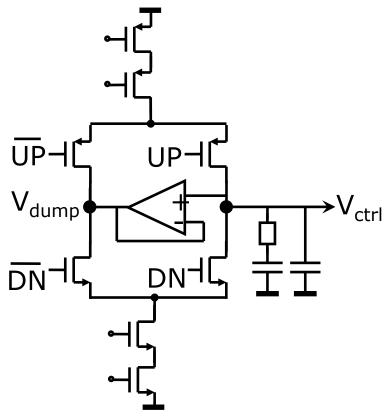
 A spur of -62dBc at 5GHz translates to 100fs peak-to-peak jitter


SSPD With Dummy Sampler

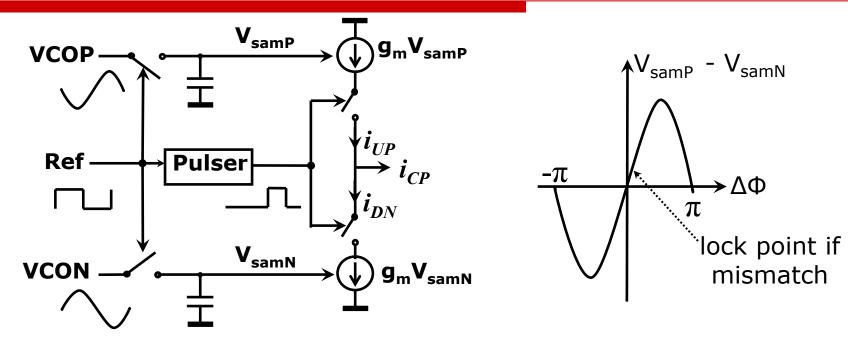

- Complementary switched dummy sampler can balance the load, and also compensate switch charge injection
- □ VCO-sampler buffers can be added to further reduce the spur, at the expense of power consumption

Direct VCO Sampling Design Example

□ It's possible to do direct VCO sampling to save buffer power when spur requirement is modest (e.g. -60dBc at 2.2GHz has been demonstrated in [6])

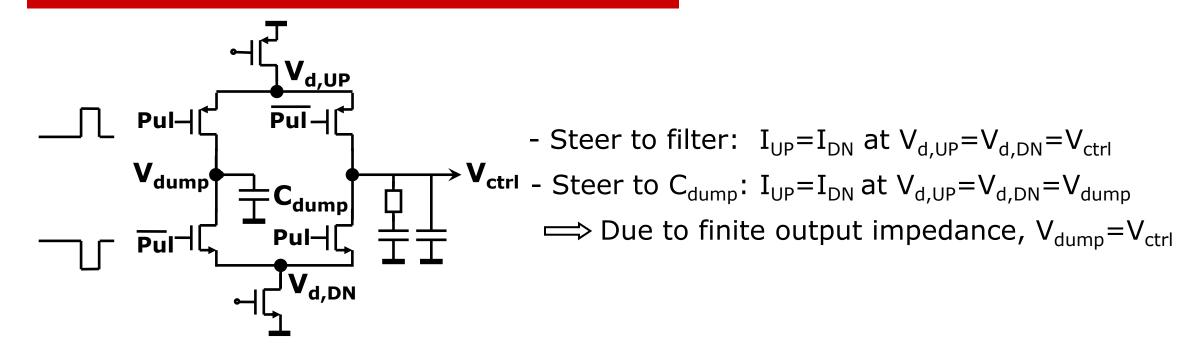

CP Design: Classical PLL

□ In classical CP design, UP/DN current source has constant amplitude, but variable on-time. UP/DN mismatch has to be compensated by switch-on time difference, leading to CP output ripple and reference spur

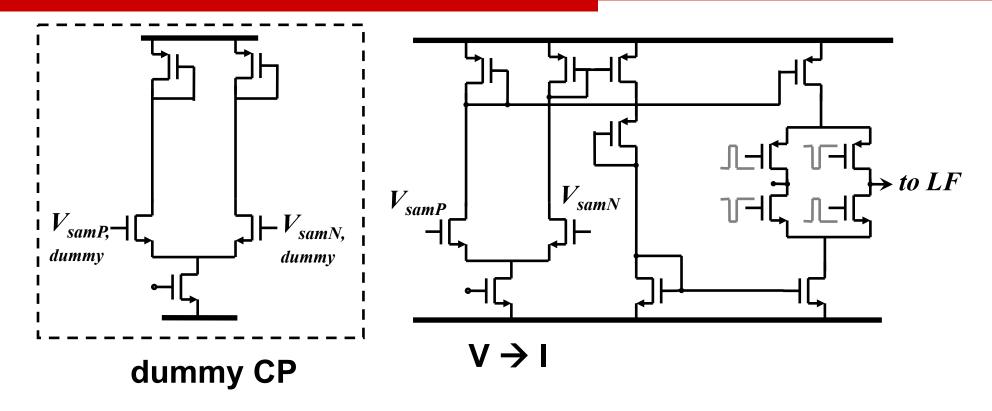

$$i_{UP}$$
 i_{DN}
 i_{CP}

Classical Low Ripple CP Design

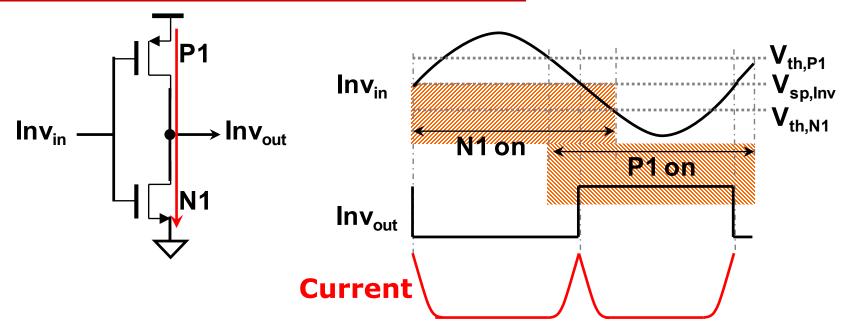
- □ Cascode transistors for high current source impedance, better matching
- \square Current steering, Unity Gain Buffer forces $V_{dump} = V_{ctrl}$ to keep node voltages during switching


CP in SSPLL

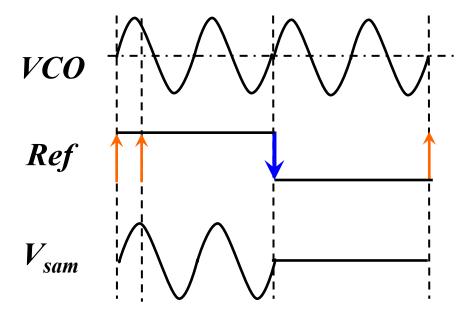
In SSPLL, UP/DN has constant switch-on time defined by the Pulser, but variable amplitude controlled by V_{sam} . UP/DN mismatch compensated by a shift in locking/sampling point, does not lead to CP ripple



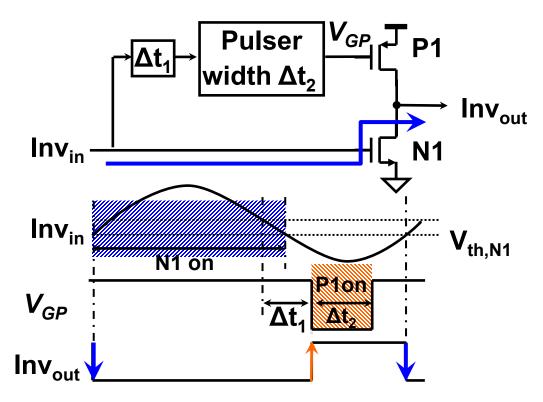
Simple SSPLL CP Design


- □ UP/DN mismatch still can't be too large to make sure locking point is close to zero crossing, but it is much more relaxed and UP/DN can be just single transistor.
- ☐ Can achieves V_{dump}=V_{ctrl} without using Unity Gain Buffer

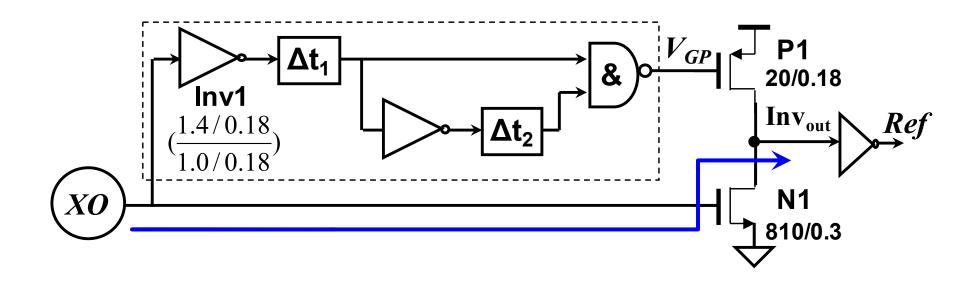
SSPLL CP Design Example


Due to superior CP noise suppression of SSPLL, a small I_{CP} on the order of 10μA is enough to achieve very low phase noise [6]

Sampling Reference Clock Buffer


- ☐ In many applications, off-chip XTAL provides sine-wave, while PFD/SSPD needs square-wave Ref, therefore a sine-to-square buffer is needed
 - Slow sine-wave input, N1/P1 could be both on, leading to short-circuit current
 - Short-circuit current could be >90% of inverter power

How to Reduce Short-Circuit Current?


- □ Practical sampler: track-and-hold
 - Only the sampling edge (SE) is critical for noise
 - The tracking edge (TE) can be noisy `

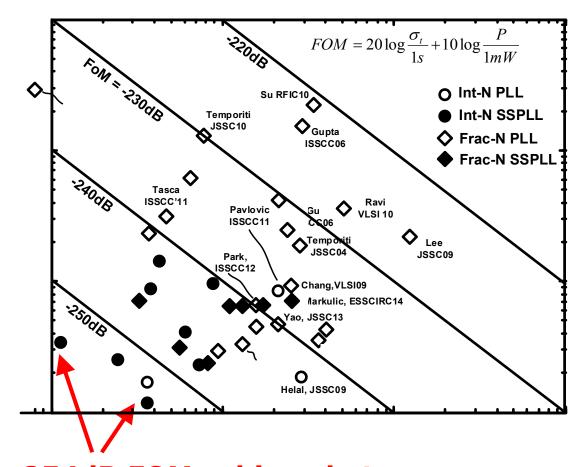
Low Power Sine-to-Square Ref Buffer

- N1/P1 on-time guaranteed non-overlapping, short-circuit current eliminated
- Critical path for SE is kept clean and short

Low Power Ref Buffer Design Example [6]

- Delays are implemented with shunt-C inverters
- ☐ Transistors in critical path are sized big, others small to save power

SSPLL Generalized

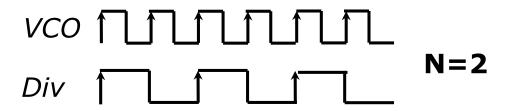

- ☐ The sampled waveform does not need to be sine-wave. The key is high detection gain by sampling high dv/dt slope.
- ☐ It works with any waveform, can also be applied to e.g. ring oscillators [7-8], but the detection gain need to be generalized:

$$\beta_{SSPD} = \frac{\Delta V_{sam}}{\Delta \phi_{VCO}} = \frac{SR_{sam}}{2\pi f_{VCO}}$$

☐ In more advanced process, SSPD can sample faster and utilize steeper slopes, thus benefiting from scaling. SSPLLs working at 10s-of-GHz have been demonstrated [9-10].

Low Jitter PLL Design Utopia

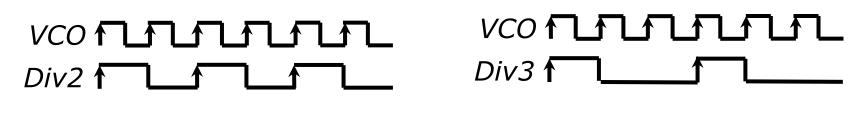
- □ All PLL need Ref clock. "PLL Utopia": only the Ref clock path contributes to non-VCO noise and power.
- In SSPLL, divider power/noise can be eliminated, CP noise is greatly suppressed, SSPD virtually consumes no power (small C_{sam}) and can even do buffer-less VCO sampling. It can thus approach this Utopia and achieve state of art performance.

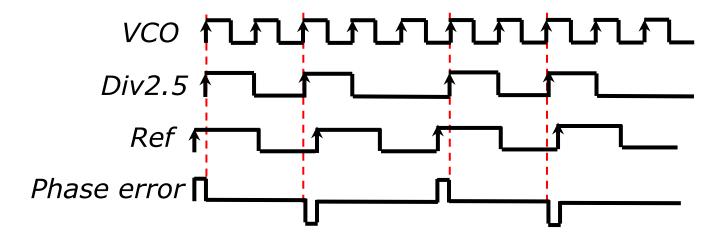


Record -254dB FOM achieved at ISSCC18 using SSPLL

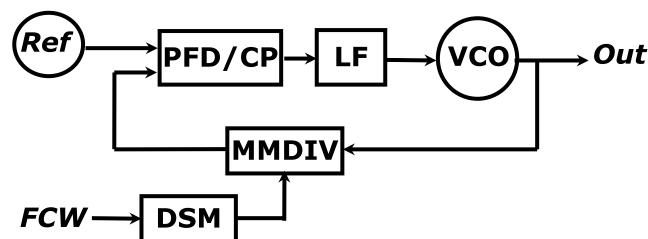
Outline

- □ PLL Basics
- Classical CP PLL Analysis and Optimization
- Low Jitter Sub-Sampling PLL Architecture
- □ Frac-N Sub-Sampling PLL
- Conclusion


Fractional-N PLL

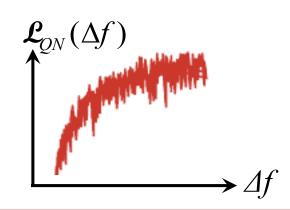


- □ So far we have only discussed and analyzed integer-N PLLs
- \square In wireless transceivers, what needed is often fractional-N PLLs: the wanted channel frequency is non integer multiple of f_{ref}
- \square E.g. WLAN 5825MHz channel with f_{ref} =40MHz: N=145.625

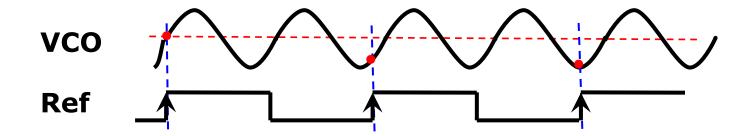

How To Realize Frac-N Division

☐ Frac-N division can be realized by dithering between different int-N divisions and average them out through the PLL's low pass filtering

Basic Frac-N PLL Architecture

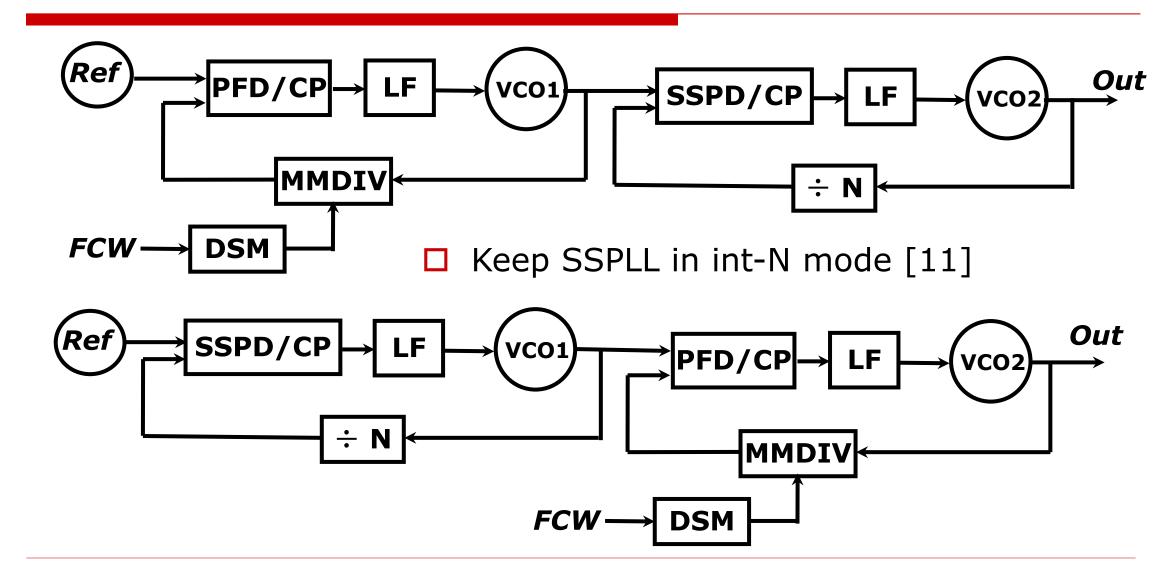

FCW: Frequency control word MMDIV: Multi-Modulus Divider

DSM: Delta-Sigma Modulator

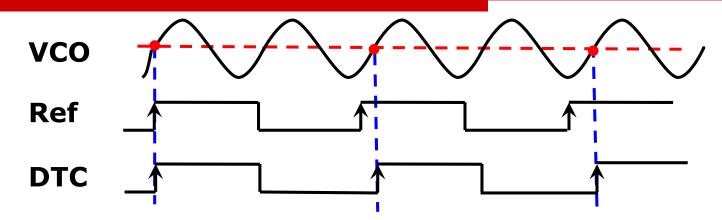

n: DSM order

- □ 2nd or 3rd order DSM is often used to reduce frac-N spurs
- □ Frac-N operation adds quantization noise

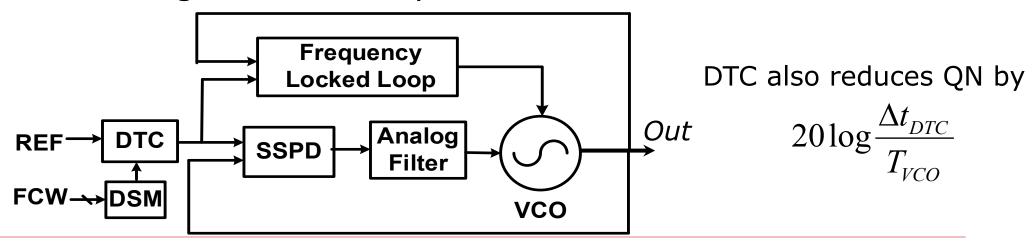
$$\mathcal{L}_{QN}(\Delta f) = \frac{(2\pi)^2}{12f_{ref}} \{2\sin(\pi \frac{\Delta f}{f_{ref}})\}^{2(n-1)}$$

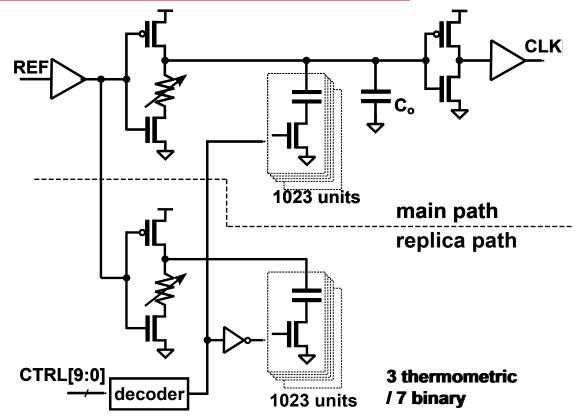


Can SSPLL Work As Frac-N?

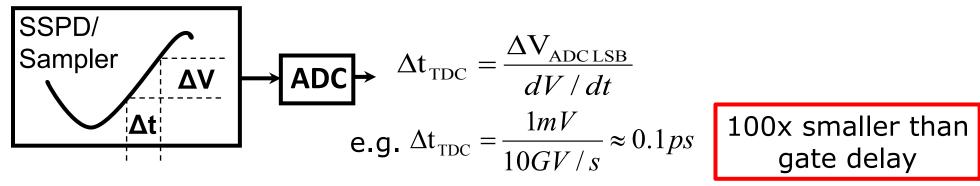


- □ SSPD is linear only around zero crossing, ok for int-N
- ☐ In frac-N PLL the sampling point is all over the VCO waveform even in locked state, SSPD wouldn't work properly

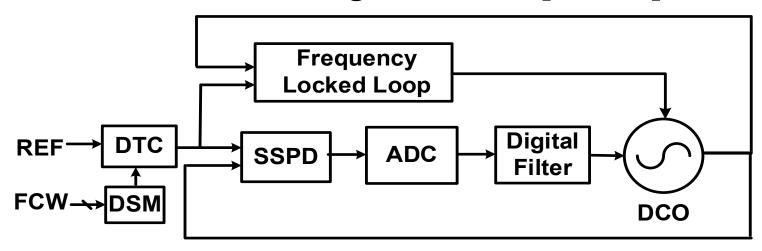

Cascade SSPLL With Frac-N PLL


Digitla-to-Time Converter Assisted Frac-N SSPLL

 \square DTC modulates Ref edge, SSPD sees small Δt , works as if it's int-N mode even though the entire system is frac-N mode



10-bit DTC Design Example



- □ RC delay based DTC [12]
- ☐ Coarse tuning via R, fine tuning via cap-bank
- □ Replica path lower code dependent supply ripple

SS Time-to-Digital Converter and Digital SSPLL

Quantize SSPD output with ADC leads to high resolution SSTDC, can be used to build a digital SSPLL [13-16]

Outline

- □ PLL Basics
- Classical CP PLL Analysis and Optimization
- Low Jitter Sub-Sampling PLL Architecture
- ☐ Frac-N Sub-Sampling PLL
- Conclusion

Summary and Conclusion

- ☐ There is fundamental tradeoff between PLL jitter and power. The performance can be benchmarked using PLL FOM.
- ☐ Optimum PLL performance needs optimization from both block level and system level (power budgeting, optimum BW)
- □ Sub-Sampling PLL is proven to be low jitter architecture
 - High phase detection gain, low PD/CP noise, possibly no divider noise
 - Can operate in Frac-N mode
 - Can be digitized utilizing high resolution sub-sampling TDC

Papers to See This Year

Session 15 "RF PLLs" Relevant Papers:

15.1: Constant-Slope DTC for Frac-N PLL

- □ 15.3: Sampling-TDC/ADC based digital PLL
- □ 15.6: Type-I Sub-Sampling PLL with -254dB FOM
- □ 15.7: Type-I Reference Sampling PLL with -253.5dB FOM

Session 23 "LO Generation" Relevant Paper:

- □ 23.1: Frac-N PLL for 5G communication
- 23.5, 23.6: VCO design
- □ 23.7: Classical CP PLL with 54fs rms jitter in 16nm Finfet

Suggested References

- 1. P. Kinget, "Integrated GHz voltage controlled oscillators," *Analog Circuit Design: (X)DSL and Other Communication Systems; RF MOST Models; Integrated Filters and Oscillators*, W. Sansen, et al., Ed. Boston, MA: Kluwer, 1999, pp. 353-381.
- 2. A. A. Abidi, "Phase noise and jitter in CMOS ring oscillators," IEEE J.Solid-State Circuits, vol. 41, no. 8, pp. 1803–1816, Aug. 2006.
- 3. X. Gao, E. Klumperink, P. J. F. Geraedts and B. Nauta, "Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops," *IEEE Trans. Circuits Syst. II*, vol. 56, no.2, pp. 117-121, Feb. 2009.
- 4. X. Gao, E. Klumperink, M. Bohsali and B. Nauta, "A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is not Multiplied by N²," *IEEE J. Solid-State Circuits*, vol. 44, no.12, pp. 3253-3263, Dec. 2009.
- 5. C.-W. Hsu, K. Tripurari, S.-A. Yu and P. R. Kinget, "A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise PLLs With Robust Operation Under Supply Interference," *IEEE Trans. Circuits Syst. I,* vol.62, no.1, pp.90-99, Jan. 2015.
- 6. X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, "A 2.2GHz Sub-Sampling PLL with 0.16ps_{rms} Jitter and 125dBc/Hz In-band Phase Noise at 700μW Loop-Components Power," *IEEE Symposium on VLSI Circuits*, pp. 139-140, Jun. 2010.
- 7. S. D. Vamvakos, et. al., "A 8.125–15.625 Gb/s SerDes using a sub-sampling ring-oscillator phase-locked loop," *IEEE Custom Integrated Circuits Conference (CICC)*, paper 10.1, Sept. 2014.
- 8. K. Sogo, A. Toya and T. Kikkawa, "A ring-VCO-based sub-sampling PLL CMOS circuit with -119 dBc/Hz phase noise and 0.73 ps jitter," *IEEE European Solid State Circuits Conference (ESSCIRC)*, pp.253-256, Sept. 2012.
- 9. X. Yi, C. C. Boon, J. Sun, N. Huang and W. M. Lim, "A low phase noise 24/77 GHz dual-band sub-sampling PLL for automotive radar applications in 65 nm CMOS technology," *IEEE Asian Solid-State Circuits Conference (A-SSCC)*, pp.417-420, Nov. 2013.
- 10.T. Siriburanon, et. al., "A 60-GHz sub-sampling frequency synthesizer using sub-harmonic injection-locked quadrature oscillators," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.105-108, Jun. 2014.

Suggested References Cont'd

- 11.W. EI-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi, M. Hossain, "A 28GHz quadrature fractional-N synthesizer for 5G mobile communication with less than 100fs jitter in 65nm CMOS", IEEE Radio Frequency Integrated circuits Symposium (RFIC), pp. 118-121, 2016.
- 12.N. Markulic, K. Raczkowski, P. Wambacq and J. Craninckx, "A 10-bit, 550-fs step Digital-to-Time Converter in 28nm CMOS," IEEE European Solid State Circuits Conference (ESSCIRC), pp.79-82, Sept. 2014.
- 13.T. Siriburanon, et. al., "A 2.2GHz –242dB-FOM 4.2mW ADC-PLL using digital sub-sampling architecture," *IEEE Solid-State Circuits Conference (ISSCC)*, paper 25.2, Feb. 2015.
- 14.Z. Ru, P. Geraedts, E. Klumperink and B. Nauta, "A 12GHz 210fs 6mW Digital PLL with Sub-sampling Binary Phase Detector and Voltage-Time Modulated DCO," IEEE Symp. VLSI Circuits, pp. 194-195, June 2013.
- 15.Z.-Z. Chen, et. al., "Sub-sampling all-digital fractional-N frequency synthesizer with -111dBc/Hz in-band phase noise and an FOM of -242dB," IEEE Solid- State Circuits Conference (ISSCC), paper 14.9, Feb. 2015.
- 16.W.-S. Chang, P,-C, Huang and T.-C. Lee, "A Fractional-N Divider-Less Phase-Locked Loop With a Subsampling Phase Detector," IEEE J. Solid-State Circuits, vol.49, no.12, pp.2964-2975, Dec. 2014.
- 17. X. Gao, E. Klumperink, G. Socci, M. Bohsali and B. Nauta, "Spur Reduction Techniques for Phase-Locked Loops Exploiting a Sub-Sampling Phase Detector," *IEEE J. Solid-State Circuits*, vol. 45, no.9, pp. 1809-1821, Sept. 2010.
- 18.A. T. Narayanan, et. al., "A Fractional-N Sub-Sampling PLL using a Pipelined Phase-Interpolator with a FoM of -246dB", IEEE European Solid State Circuits Conference (ESSCIRC), pp.380-383, Sept. 2015.
- 19. X. Gao, "Low Jitter Low Power Phase Locked Loops Using Sub-Sampling," PhD thesis, University of Twente, ISBN-978-90-365-3022-4, 2010.
- 20.J. A. Crawford, Frequency Synthesizer Design Handbook. Boston, MA: Artech House, 1994.
- 21.C. S. Vaucher, Architectures for RF Frequency Synthesizers. Boston, MA: Kluwer, 2002.