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Intel Itanium [ISSCC09]

PLL and Applications

 PLL is short for Phase Locked Loop, a feedback control system 
that generates an output signal whose phase is locked to the 
phase of an input signal

 PLLs are versatile 
 Clock generation
 Frequency synthesis
 Phase/Frequency modulation
 Clock and data recovery
 Synchronization

…
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Basic PLL Architecture

÷N

PDRef OutVCOLF

 Basic components in a PLL
 Reference clock (Ref)
 Phase Detector (PD)
 Loop Filter (LF)
 Voltage Controlled Oscillator (VCO)
 Frequency Divider (÷N)

Phase Locked

Ref
Div
VCO

Div
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PLL Performances Metrics

 This tutorial emphasizes on phase noise / jitter and power as 
they involve fundamental tradeoffs and are often key PLL design 
specs for wireless transceivers

 PLL performance can be measured in many ways:
 Phase Noise 
 Jitter
 Power Consumption
 Spur
 Settling Time 
 Locking Range
 Silicon Area

…
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Jitter and Phase Noise

 Jitter is the random or systematic deviation in time of the zero-crossings of a 
clock with respect to corresponding zero-crossings of an ideal clock

 In frequency domain, the deviation from ideal clock result in spectral components 
at frequencies other than the intended output frequency, i.e., phase noise

Ideal clock Jitter
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Relating Jitter and Phase Noise
 Phase Noise is often expressed in single-sideband-noise-to-carrier ratio          

, which is half the one sided power spectral density SФ, at offset frequency 
Δf relative to the carrier, plotted in dB scale with unit dBc/Hz :
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 Total rms phase error is the integral of           :
 Rms jitter is related to rms phase error as:
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Impact of Phase Noise In Wireless Transceivers

 In wireless transceivers, PLL is often used to generate Local Oscillator (LO) 
clocks for the mixer 

 In receiver, reciprocal mixing of LO phase noise and interferences fall into 
signal band and degrade SNR. This translates to a spec of total phase error 
or jitter integrated over a band of interest [fl, fh]. E.g. [10kHz,10MHz] for 
802.11n WLAN

RF IF

LO

interference
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Phase Noise Spectrum Example
 From the signal source 

analyzer, we can read

Carrier Freq 5.825GHz
PN at 10kHz -100.3dBc/Hz
PN at 100kHz -105.6dBc/Hz
PN at 1MHz -112.5dBc/Hz
PN at 10MHz -132.6dBc/Hz
Intg Noise 
(10kHz,10MHz) -46.95dBc

RMS Noise 6.35 mrad, 
364.1mdeg

RMS Jitter 173.6 fsec

fl=10kHz fh=10MHz
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Phase Noise / Jitter Calculation Example

 In this example, single side phase noise 
integrated from 10KHz to 10MHz is -46.95dBc, 
the rms phase error is:

fs
GHz

m
fout

t 6.173
825.52
35.6
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≈

×
== Φ

ππ
σσ

Carrier Freq 5.825GHz
PN at 10kHz -100.3dBc/Hz
PN at 100kHz -105.6dBc/Hz
PN at 1MHz -112.5dBc/Hz
PN at 10MHz -132.6dBc/Hz
Intg Noise 
(10kHz,10MHz) -46.95dBc

RMS Noise 6.35 mrad, 
364.1mdeg

RMS Jitter 173.6 fsec

 The rms jitter can be calculated as:
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Classical CP PLL Architecture

 Components in a classical CP PLL
 Reference clock (Ref)
 Phase Frequency Detector (PFD)/Charge-Pump(CP)
 Loop Filter (LF)
 Voltage Controlled Oscillator (VCO)
 Frequency Divider (÷N)

÷N

PFD/CPRef OutVCOLF
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Classical CP PLL Working Principal
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PLL Transient Response Example

 PLL transient response is generally a nonlinear process. The PLL operation is 
non-continuous (divider/PFD event driven, CP output non-continuous)



Tutorial: Low-Jitter PLLs for Wireless Transceivers
© 2018 IEEE 
International Solid-State Circuits Conference 15 of 82

Linear Phase Domain Model

 However, once phase locked and if PLL bandwidth fc<fref/10, a linear phase-
domain model can be used for noise and stability analysis

 To analyze PLL phase noise, we can group the noise sources into two:
 VCO noise: noise from LF/VCO/VCO buffer referred to VCO output
 Non-VCO noise: noise from other loop components referred to PFD input, 

amplified by N2 when referred to PLL output

∑ Kd F(s) KVCO/s

1/N

-

+
+ +

+

++Φref,n

ΦPFD,n

Φout

Φdiv,n

iCP,n ΦVCO,nvLF,n

 How do we derive this model?
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VCO and Modeling

 VCO generates PLL output, its frequency and phase 
can be expressed as

 Taking the Laplace transform (first term is a constant)

VCOctrlcenterVCOVCO Kv ⋅+= ,ωω

OutVCOvctrl
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 VCO in phase domain is an integrator 

Vctrl

VCOf
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VCO Phase Noise

 VCO phase noise is fundamentally related to design parameters like oscillation 
frequency fVCO, and power dissipation PVCO. The quality of a VCO design can be 
benchmarked using the classic VCO Figure-Of-Merit (FOM) [1]

 Therefore, 

 State-of-art VCO design’s FOM is <-190dBc/Hz, meaning e.g. <-130dBc/Hz 
phase noise at 1MHz offset at 1GHz output given 1mW power
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Loop Filter and Noise

 The most common LF is a second order filter:

1
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 LF noise is from the resistor R, referred to VCO output (assume C1>>C2 ):

 Targeting for low jitter and low power, LF noise should be 
made negligible compared with intrinsic VCO noise by 
reducing R1 (at the expense of larger C ) or reducing KVCO
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Typical VCO design

VCOPVvctrl

Cap Array

VCON

VCOPVCON

Cap code

 Digital controlled coarse tuning cap to handle large tuning range 
requirement while keeping KVCO low

Vctrl

VCOf

…

Cap code 0
Cap code 1

Cap code n
Cap code n-1



Tutorial: Low-Jitter PLLs for Wireless Transceivers
© 2018 IEEE 
International Solid-State Circuits Conference 20 of 82

Divider Modelling

 Basic function of a frequency divider

 What’s the effect of divider on phase modulated incoming signal?

OutIn ÷NN
in

out
ωω =

tAtt mminin ωωφ sin)( +=- Input phase 

tA
dt

tdt mmmin
in

instin ωωωφω cos)()(, +==

N
tA

NN
t mmmininstin

instout
ωωωω

ω cos)( ,
, +==

- Instantaneous input frequency

- Instantaneous output frequency
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Divider Modelling, Cont’d 

 The phase at divider output is

∫ ⋅= dttt instoutout )()( ,ωφ

t
N
At

N m
min ωω sin+=

∫ ⋅+= dt
N

tA
N

mmmin )cos( ωωω

 For the modulated term, peak phase deviation is reduced by N. However, the 
modulation frequency is not affected.

 In phase domain, divider can thus be modeled as 1/N
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Low Noise Divider Design

 If N is large, Div-N is often designed with multiple smaller divider stages in 
series, jitter accumulates over the stages 

 Divider chain jitter can be removed using retimer at divider output. The jitter 
would then be just from the retiming DFF. 

Out

D    Q

In

Out
 Simple divide-by-2 design

Jitter

Out

In_buf
In ÷2 D   Q÷2

In_buf

Div_out
Div_out

In
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PFD/CP Modelling

 PFD detects timing error, the gain is
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 CP pumps current into LF, the gain is
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CP Noise

 In steady state, CP is switched on only for a 
fraction of time τPFD of each period Tref to avoid the 
CP dead zone. The equivalent CP noise is:

 The theoretical minimum power needed by a CP is:

)(4)( ,,, DNmUPmniCP ggkTfS +⋅= γ

 Assume the simplest CP design and same UP/DN transistor 
gm, the PSD of the CP thermal noise current is
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CP Noise Referred to PLL Output

2 2
,

2 ,
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 CP noise referred to PLL output

2 2
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PLL CP PFD

CP eff CP

f kT Vf
P V

π γτ−
⋅ ⋅

∆ = ⋅ ⋅L⇒

 To minimize CP noise, designer should maximize the CP current source over-
drive voltage, minimize switch-on time, or burn more power with larger ICP
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Δt

Δv

Reference Noise

 Reference clock is often provided by an off-chip clock source 
like a XTAL oscillator. On chip clock buffers adds jitter to it.

 Jitter generated by a simple inverter buffer can be related to
the rms voltage noise and slew rate SRout at inverter output [2]:
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 For thermal noise, PSD is white:
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Inverter Clock Buffer Noise

2
DDtotrefinvbuf VCfP ⋅⋅=

 On the other hand, theoretical minimum inverter power is dynamic power:
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 To minimize inverter buffer noise, designer should maximize output slew rate, 
minimize noise factor and Ctot/Cout . For further lower noise, burn more power.

 Similar analysis applies to other event driven circuits e.g. DFFs in divider/PFD 
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 When referred to PLL output:
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Burn More Power (Impedance Level Scaling)

 Put two identical circuit in parallel and connect all the nodes, power and 
area would double but noise will be reduced by 3dB

W/L W/L

V

V V

V
V V

V V

in

out out

in
ss ss

DD DD

R RC C

nW/L R/n nC

W/L R C



Tutorial: Low-Jitter PLLs for Wireless Transceivers
© 2018 IEEE 
International Solid-State Circuits Conference 29 of 82

Linear Phase Domain Model With Noise
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 Now we know the PLL open loop gain is

- This is a 3rd order type-II PLL (two poles at origin)
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PLL Open Loop Gain and Bode Plot
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PLL Noise Transfer Function

 Noise transfer function from (PFD input referred) non-VCO noise to PLL output 
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Overall PLL Phase Noise and Jitter

 Non-VCO noise low pass filtered dominates in-band, VCO noise high pass 
filtered dominates out-band, thus involve bandwidth tradeoff

PLL noise
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 Optimum bandwidth fc,opt is approximately where VCO and non-VCO noise 
intersects. At fc,opt, VCO and non-VCO components contribute equal jitter [3] 
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PLL FOM
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 In an optimized PLL, VCO and non-VCO components not only contributes 
equally to jitter, but also equally to power [3]. Once optimization is done, 
the fundamental way to improve jitter is to burn more power

 The design quality of VCO and non-VCO components are equally important in 
achieving good PLL FOM

 A PLL benchmarking FOM can thus be defined as
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State-of-Art PLL FOMs

 PLL FOM improves over the years, Sub-Sampling PLLs achieved state-of-art FOM
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CP Noise and CP Feedback Gain

 CP is one of the major PLL noise source

CPβ Define CP feedback gain       ,

 CP noise is suppressed by βCP , large βCP desired for low noise 

,
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Classical PLL CP Feedback Gain

π
β

2
1

,
CP

classCP
I

N
×=

‘1’

D   Q
rst

‘1’

Ref

Div
&

rst
D   Q

IUP=ICP

IDN=ICP

÷N

OutVCO
iCP

 βCP reduced by N, thus CP noise amplified by N2
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Sub-Sampling Phase Detector (SSPD)

VCO lags VCO leads

VCO

Ref

Vsam

Phase Locked

VDC

VDC

 Sub-Sampling PD for Integer-N PLL [4]
 VCO sub-sampled by Ref without going through divider 
 Phase/Timing error converted into voltage error
 High phase detection gain due to high VCO slew rate (dv/dt)
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Sub-Sampling PD/CP (SSPD/CP)

• Voltage controlled CP • Ideal characteristic

locking point 

There is no N factor

 Detection characteristic is fairly linear once in lock
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SSPLL and Modeling

refVCOalias fNff ⋅−=

SSPD/CP VCORef OutLF

Φn,ref in,CP

N ∑
-

Kd F(s) KVCO/s [Фout ]+[Φref ] +

dCP K=β

CP noise not multiplied by N2

fref 2fref

……

N·fref

VCOAlias No Divider but a virtual Multiplier
 Sub-sampling process 

 Ref noise multiplied by N2, same as classical PLL
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SSPDout

VCO

Ref

PFDout

VCO

Ref

PFDout

VCO

Ref

VCO

Ref

Vsam

Vsam

Essential Difference In Phase Detection

 Same PD output, thus βCP halved 
acts as Δt detector  

 PD output x2 (SlewRate x2), thus same βCP
acts as Δφ detector  

N x2

SSPDout

N x2
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f
VCOfNff VCOIF /=

PFD

0

N Factor On CP Noise: Another Angle

 PLL is a loop back transceiver: VCO transmits ‘signal’ (VCO noise), the Loop 
receive/process it and feed it back to cancel/suppress the VCO noise

 Classical PLL is similar to a superheterodyne receiver 
 Divider: 1st down-converter, to low IF 
 PFD: 2nd down-converter, to DC
 CP/LF: base band (TIA/LF)

 Divider as down-converter has 1/N attenuation, PFD/CP noise thus amplified by N2
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f

SSPD Aliasing

VCOf0

Why no N Factor In SSPLL

 SSPLL is similar to a direct conversion receiver
 SSPD down-converter has no attenuation but a gain of 1, thus no 

amplification for PD/CP noise
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CPeff

VCO

mCP

VCO

CP

mVCO

PFDCP

SSPDCP

V
AN

gI
AN

NI
gA

,,

, 4
/2

4
/)2/(

⋅⋅=⋅⋅== ππ
πβ

β

SSPLL VS  Classical PLL

SSPLL has much larger βCP, thus more 
CP noise suppression 

>>1

e.g. 1000
20
40404 ≈××=
V
V

.

.π

 SSPLL ideally has no divider noise
 SSPLL CP noise greatly suppressed by large βCP 
 Comparing βCP with classical PFD/CP assuming same ICP



Tutorial: Low-Jitter PLLs for Wireless Transceivers
© 2018 IEEE 
International Solid-State Circuits Conference 45 of 82

SSPD Noise

 With white PSD, the SSPD phase noise is:

HzdBc
Mf

/132
4.04010

104
2

21

−≈
××

×
=

−

- 10fF Csam enough for very low phase noise 

2)(
VCOrefsam

SSPD AfC
kTf

⋅⋅
=∆L

e.g.

 The sampling process would add kT/C noise and cause jitter
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2
2
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SSPLL Design Challenges

 SSPLL has no divider, may lock to any integer N
 SSPD/CP has very large βCP , may need big cap for stabilization

N ∑
-

βCP KVCO/s
R1
C1 C2

21 }{
c

CP

z

c
VCOKC

ω
β

ω
ω

⋅⋅≈11

1
CRz =ω

1RKVCOCPc ⋅⋅≈ βω

21
c

CPC
ω
β

∝

 Once the design choice of KVCO and          has been made  

21
c

CP

f
C β

∝

zc ωω /

or
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Relating βCP , fc,opt and Filter Area

 When CP noise is much higher than other noise 

CP noise with 
a higher βCP

CP noise

Other non-VCO noise

CP

C
β
1

1 ∝
CPoptcf β∝,

2
,

1
optc

CP

f
C β

∝
Larger βCP saves area

)( f∆L

f∆
fc,opt fc,opt
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Relating βCP , fc,opt and Filter Area

 When CP noise is no longer dominating loop noise, 

CPC β∝
Constf optc =,

2
,optc

CP

f
C β
∝

Larger βCP wastes area

 Once CP noise is negligible, further larger βCP only wastes area

CP noise with 
a higher βCP

CP noise
Other non-VCO noise

)( f∆L

f∆
fc,opt
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SSPD/CP with Gain Control

pulmVCOCP DRgA ⋅⋅=β

Ref

VCO Sampler

VDC

iCP

Sampler

Ref Pulser

VCO

VDC

iCP

• One T&H, pulser
reused as 2nd T&H

Need two T&H

pul

 A proper choice of Pulser duty ratio DRpul reduces filter area while keeping CP 
noise negligible. Pulser also reduces the sample and hold induced loop delay
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Differential Sampling

Sampler

Ref Pulser

Sampler

VCOP

VCON

VsamP

VsamN

Ref

VCOP
VCON

 Cancels clock feed-through & charge injection
 VCO crossing (most linear point) is locking point
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Ref Out

Classical PLL with Dead Zone (DZ) as FLL

Sampler VCOCP

Pulser

PFD

÷ N

CPDZ

SSPLL With Frequency Locking Loop

Core loop

 During locking, ΔФ > DZ, FLL has large gain, brings loop to lock
 Close to locking, ΔФ < DZ, FLL has zero gain, not injecting noise
 FLL can also be disabled after locking to save power
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Dead Zone Creator Example

‘1’

D    Q

rst

D    Q

rst

‘1’
Ref

Div

&

UP

DN

• Small phase error

Div

Ref

DN

FLL_DN
• Large phase error

D    Q

D    Q FLL_UP

FLL_DN

Ref

Div

 With 50% Ref and Div duty ratio, Dead Zone is (-π, +π)
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It Also Works Without Dead Zone

CPi

t∆

Tref

TVCO

Combined
SSPD/CP
PFD/CP

. . . . . .

Sampler VCOCP

Pulser

PFD

÷ N

CP

 FLL keeps running, more robust against disturbances [5]

 Overall characteristic is SSPD/CP and PFD/CP combined 

 FLL PFD/CP injects noise but is attenuated by (βCP,SSPD+βCP,PFD)2
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How To Design The SSPD

t

ωVCO

LC/1

)(/ samCCL +1CsamCL

Vsam

VCO Ref

]
2

)log[sin(20)(
C

CNDRdBcSpur sam
ref ⋅⋅⋅=

π
π

 The most noticeable disturbance to VCO is load modulation or BFSK, 
which would lead to large reference spurs:

 SSPD can be designed as simple switch and cap. However, sampling 
activity disturbs the VCO in a few ways and need to be taken care of.

BFSK effect
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Reference Spur

 Spurs are unwanted spurious component and would lead to deterministic 
jitter (versus random jitter by phase noise) 20/)(102 dBcSpur

out
pp f

t ×=∆ − π

 A spur of -62dBc at 
5GHz translates to 100fs 
peak-to-peak jitter
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CsamCL

VCO Ref

Dummy sampler

Ref

Csam

SSPD With Dummy Sampler

 Complementary switched dummy sampler can balance the load, 
and also compensate switch charge injection

 VCO-sampler buffers can be added to further reduce the spur, at 
the expense of power consumption

t

ωVCO

)(/ samCCL +1
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Direct VCO Sampling Design Example

10f

RefRef

VsamP

Csam10f

10f

10f

VsamNVtune

Cap Array

XTAL

 It’s possible to do direct VCO sampling to save buffer power when spur 
requirement is modest (e.g. -60dBc at 2.2GHz has been demonstrated in [6])

VsamN, 
dummy

VsamP, 
dummy
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CP Design: Classical PLL

Ref

IUP

IDN

iCP

iCP

lock point if 
mismatch

iUP

iDNDiv
VCO

iCP
iUP

iDN
0

UP

DN
-2π

2π ΔΦPFD

 In classical CP design, UP/DN current source has constant amplitude, but 
variable on-time. UP/DN mismatch has to be compensated by switch-on time 
difference, leading to CP output ripple and reference spur
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Classical Low Ripple CP Design

UP

DNDN

UP

Vdump +
- Vctrl

 Cascode transistors for high current source impedance, better matching
 Current steering, Unity Gain Buffer forces Vdump=Vctrl to keep node voltages 

during switching
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Ref Pulser

VCOP

VCON

VsamP

VsamN

iCP

gmVsamP

gmVsamN

iUP

iDN

CP in SSPLL

lock point if 
mismatch

iCP

iUP

iDN
0

-π
π

ΔΦ

VsamP - VsamN

 In SSPLL, UP/DN has constant switch-on time defined by the Pulser, but 
variable amplitude controlled by Vsam. UP/DN mismatch compensated by a 
shift in locking/sampling point, does not lead to CP ripple
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Simple SSPLL CP Design

- Steer to filter:  IUP=IDN at Vd,UP=Vd,DN=Vctrl

- Steer to Cdump: IUP=IDN at Vd,UP=Vd,DN=Vdump

Due to finite output impedance, Vdump=Vctrl

Pul

PulPul

Pul

Vdump VctrlCdump

Vd,DN

Vd,UP

 UP/DN mismatch still can’t be too large to make sure locking point is close to zero 
crossing, but it is much more relaxed and UP/DN can be just single transistor. 

 Can achieves Vdump=Vctrl without using Unity Gain Buffer 
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SSPLL CP Design Example

to LF
VsamN, 
dummy

VsamP, 
dummy

dummy CP 

VsamNVsamP

V  I

 Due to superior CP noise suppression of SSPLL, a small ICP on the 
order of 10µA is enough to achieve very low phase noise [6]



Tutorial: Low-Jitter PLLs for Wireless Transceivers
© 2018 IEEE 
International Solid-State Circuits Conference 63 of 82

Sampling Reference Clock Buffer

Vth,N1 

N1

P1 Vth,P1 

N1 on
P1 on

Invout

Vsp,Inv

Invin

Invout

Invin

 In many applications, off-chip XTAL provides sine-wave, while PFD/SSPD 
needs square-wave Ref, therefore a sine-to-square buffer is needed
 Slow sine-wave input, N1/P1 could be both on, leading to short-circuit current
 Short-circuit current could be >90% of inverter power

Current
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How to Reduce Short-Circuit Current?

VCO

Ref

Vsam

 Practical sampler: track-and-hold
 Only the sampling edge (SE) is critical for noise 
 The tracking edge (TE) can be noisy `
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Low Power Sine-to-Square Ref Buffer
VGP

Vth,N1 

VGP

Pulser
width Δt2

N1 on

Δt1

N1

P1

P1on
Δt2

Invout

Invin

Invout

Invin

Δt1

 N1/P1 on-time guaranteed non-overlapping, short-circuit current eliminated
 Critical path for SE is kept clean and short
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Low Power Ref Buffer Design Example [6]

XO

VGP
&

810/0.3

20/0.18
Δt1

Δt2)
./.
./.(
18001
18041

N1

P1
Inv1

Invout Ref

 Delays are implemented with shunt-C inverters 
 Transistors in critical path are sized big, others small to save power 
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SSPLL Generalized

VCO

sam

VCO

sam
SSPD f

SRV
πφ

β
2

=
∆
∆

=

 The sampled waveform does not need to be sine-wave. The key 
is high detection gain by sampling high dv/dt slope .

 It works with any waveform, can also be applied to e.g. ring 
oscillators [7-8], but the detection gain need to be generalized:

 In more advanced process, SSPD can sample faster and utilize 
steeper slopes, thus benefiting from scaling. SSPLLs working at 
10s-of-GHz have been demonstrated [9-10].
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Low Jitter PLL Design Utopia

Record -254dB FOM achieved at 
ISSCC18 using SSPLL

 All PLL need Ref clock. “PLL Utopia”: 
only the Ref clock path contributes to 
non-VCO noise and power. 

 In SSPLL, divider power/noise can be 
eliminated, CP noise is greatly 
suppressed, SSPD virtually consumes 
no power (small Csam) and can even do 
buffer-less VCO sampling. It can thus 
approach this Utopia and achieve state 
of art performance.
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Outline

 PLL Basics

 Classical CP PLL Analysis and Optimization

 Low Jitter Sub-Sampling PLL Architecture

 Frac-N Sub-Sampling PLL 

 Conclusion
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Fractional-N PLL

 So far we have only discussed and analyzed integer-N PLLs
 In wireless transceivers, what needed is often fractional-N PLLs: 

the wanted channel frequency is non integer multiple of fref

 E.g. WLAN 5825MHz channel with fref=40MHz: N=145.625

Div

VCO
N=2
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How To Realize Frac-N Division

 Frac-N division can be realized by dithering between different int-N 
divisions and average them out through the PLL’s low pass filtering

Div2
VCO

Div3
VCO

Div2.5

VCO

Ref

Phase error
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Basic Frac-N PLL Architecture

MMDIV

PFD/CPRef OutVCOLF

DSMFCW

 2nd or 3rd order DSM is often used to reduce frac-N spurs
 Frac-N operation adds quantization noise 

)1(2
2

)}sin(2{
12

)2()( −∆
=∆ n

refref
QN f

f
f

f ππ
L

FCW: Frequency control word
MMDIV: Multi-Modulus Divider
DSM: Delta-Sigma Modulator
n: DSM order

Δf

)( fQN ∆L
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Can SSPLL Work As Frac-N ?

VCO

Ref

 SSPD is linear only around zero crossing, ok for int-N
 In frac-N PLL the sampling point is all over the VCO waveform even 

in locked state, SSPD wouldn’t work properly
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Cascade SSPLL With Frac-N PLL

 Keep SSPLL in int-N mode [11]

MMDIV

PFD/CPRef OutVCO1LF

DSMFCW

SSPD/CP VCO2LF

÷ N

MMDIV

PFD/CP
Ref Out

VCO2LF

DSMFCW

SSPD/CP VCO1LF

÷ N
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Digitla-to-Time Converter Assisted Frac-N SSPLL

SSPD

Frequency 
Locked Loop

VCO

Analog
Filter

REF DTC

DSMFCW

VCO

DTC

Ref

 DTC modulates Ref edge, SSPD sees small Δt, works as if it’s int-N 
mode even though the entire system is frac-N mode

Out
VCO

DTC

T
t∆log20

DTC also reduces QN by
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10-bit DTC Design Example

to ADC

1023 units

Co

REF

Co

main path

decoder

CLKDTC

CTRL[9:0] 3 thermometric 
/ 7 binary

to ADC

1023 units

Co

REF

1023 units

Co

main path

decoder

CLKDTC

CTRL[9:0]

replica path

3 thermometric 
/ 7 binary

 RC delay based DTC [12]
 Coarse tuning via R, fine tuning via cap-bank
 Replica path lower code dependent supply ripple 
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SS Time-to-Digital Converter and Digital SSPLL

SSPD

Frequency 
Locked Loop

DCO

ADCREF DTC

DSMFCW

Digital
Filter

ADCΔV dtdV /
Vt LSB ADC

TDC
∆

=∆

Δt

SSPD/
Sampler

 Quantize SSPD output with ADC leads to high resolution SSTDC,
can be used to build a digital SSPLL [13-16]

ps
sGV

mV 1.0
/10

1tTDC ≈=∆ 100x smaller than 
gate delay e.g.
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Outline

 PLL Basics

 Classical CP PLL Analysis and Optimization

 Low Jitter Sub-Sampling PLL Architecture

 Frac-N Sub-Sampling PLL

 Conclusion
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Summary and Conclusion

 There is fundamental tradeoff between PLL jitter and power. 
The performance can be benchmarked using PLL FOM.

 Optimum PLL performance needs optimization from both block 
level and system level (power budgeting, optimum BW)

 Sub-Sampling PLL is proven to be low jitter architecture
 High phase detection gain, low PD/CP noise, possibly no divider noise
 Can operate in Frac-N mode
 Can be digitized utilizing high resolution sub-sampling TDC 
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Papers to See This Year

Session 15 “RF PLLs” Relevant Papers:
 15.1: Constant-Slope DTC for Frac-N PLL
 15.3: Sampling-TDC/ADC based digital PLL
 15.6: Type-I Sub-Sampling PLL with -254dB FOM
 15.7: Type-I Reference Sampling PLL with -253.5dB FOM
Session 23 “LO Generation” Relevant Paper:
 23.1: Frac-N PLL for 5G communication
 23.5, 23.6: VCO design
 23.7: Classical CP PLL with 54fs rms jitter in 16nm Finfet
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